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Jan C. Simon4, Uwe Paasch4, and Tino Wetzig4

1 Translational Centre for Regenerative Medicine (TRM Leipzig),
Universität Leipzig, Philipp-Rosenthal-Straße 55, 04103 Leipzig

pscheibe@trm.uni-leipzig.de,
2 Interdisciplinary Centre for Bioinformatics (IZBI), Universität Leipzig, Härtelstraße
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Abstract. This work presents a complete processing-chain for a 3D-
reconstruction of Basal Cell Carcinoma (BCC). BCC is the most common
malignant skin cancer with a high risk of local recurrence after insuffi-
cient treatment. Therefore, we have focused on the development of an
automated image-processing chain for 3D reconstruction of BCC using
large histological serial sections. We introduce a novel kind of image-
processing chain which is optimised for the diffuse nature of BCC.
For full-automatic delineation of the tumour within the tissue we apply
a fuzzy c-means segmentation method, which does not calculate a hard
segmentation decision but class membership probabilities. This moves
the binary decision tumorous vs. non-tumorous to the end of the pro-
cessing chain, and it ensures smooth gradients which are needed for a
consistent registration.
We used a multi-grid form of the nonlinear registration introduced by
Braumann and Kuska 2005 effectively suppressing registration runs into
local minima (possibly caused by diffuse nature of the tumour). To reg-
ister the stack of images this method is applied in a new way to reduce
a global drift of the image stack while registration.
Our method was successfully applied in a proof-of-principle study for
automated reconstruction followed by a quantitative growth analysis.

1 Introduction

Basal Cell Carcinoma (BCC) is the most common skin cancer worldwide in
Caucasian populations [1]. It is a slow-growing epithelial malignant skin cancer,
which tends to infiltrate the surrounding tissues and it is strongly associated
with exposure to UV-irradiation [2]. The most common localisation (80 %) for
BCC is the head and neck [3]. Lesions located in the mid-face or ear (so called
H-zone) have a high risk of local recurrence after treatment [4]. BCC exists in
different subtypes and a deeper understanding of the spatial shape is important
when analysing patterns of invasion.



For other types of cancer, 3D-reconstruction methods have already been es-
tablished successfully in the past [5, 6]. For the 3D-reconstruction of BCCs up
to now only basic attempts were made to explore spatial features of tumour
growth [7, 8]. The scattered structure of the BCC require an new registration
strategy for the sequence of registration steps. In this paper we introduce a
novel registration strategy for image slice stacks appropriate for diffuse cancer
structures and present a proof-of-principle study for a new automated image
processing chain for 3D-reconstruction as well as for the certain directional and
angular morphometric growth analyses of BCC.

2 Methods

2.1 Image acquisition

Excised tissue blocks were routinely fixed and embedded in paraffin. To obtain
the maximum information on the tumour, the volumes of interest (VOI) of the
specimens were consecutively sliced in vertical direction with a thickness of 6 µm.

For routine, haematoxylin eosin (H&E) staining of all slides were subjected
to automated staining using a linear stainer (Microm, Germany). Histological
examination following finalisation of the processing by automated covering using
standard glass cover slips was performed by an independent investigator who
checked whether or not the lesions were completely excised.

Whole histological specimens with verified tumour tissue were subjected for
scanning with an automated system for digital pathology (MIRAX MIDI, Carl
Zeiss, Germany). For the reconstruction a downscaled version of colour-images
was used, each with a resolution of 1000× 400 pixels and a nominal pixel size of
15 µm× 15 µm.

Not all images are appropriate for the reconstruction due to heavy folds in
the slices which sometimes appear in the process of slicing and staining. The
images of these slices were not used and finally filled with their neighbouring
slice.

2.2 Preprocessing and Segmentation

The first step of the processing chain is a rigid registration. It roughly co-registers
consecutive image pairs by applying a combination of translation, rotation and
scaling. For a reference image R(x) and a deformable template image T (x)
this registration step tries to find the optimal parameters of a transformation
u(x) : Ω → Ω with x = (x1, x2)> ∈ Ω ⊂ R2. In the case of a rigid registration
the transformation is given by

u(x) = Ax + br with A =
(
sr 0
0 sr

)(
cosαr − sinαr
sinαr cosαr

)
(1)

and the optimal parameters are found when a certain distance measure D be-
tween the images R(x) and T (u(x)) is minimised, which is here the sum of



squared differences between the images

D(u) =
1
2

∫
Ω

[T (x− u(x))−R(x)]2 dx. (2)

Throughout this work we tried to be consistent with the notation-style of
Modersitzki [9]. This registration step is fundamental to the success of the sec-
ond non-linear registration which follows after the segmentation. This is caused
by the fact that it is more likely that the following non-linear registration suc-
ceeds when the images are already near the solution and the registration has to
compensate small local differences only.

The effect of the rigid registration can be observed in fig. 1(a). The top image
shows an unregistered set of slides, whereas the bottom image clearly documents
that after registration the slides fit quite well onto another.

All images are now filtered through a total variation (TV) filter suggested by
Chan et al. [10] to reduce noise in images while preserving structure edges. This
step is necessary since the segmentation preferably needs images of smooth tissue
areas with clear edges to succeed. Other edge preserving denoising operators like
median filters or non-linear diffusion filters preserve the edges not so well (median
filter) or need more parameter (non-linear diffusion filter). The only parameter
the TV filter requires is the estimated standard deviation of the noise whereas
this feature is easy to be estimated from background parts of a typical image.

2.3 Tumour Segmentation

The smoothed images are the basis for the fuzzy c-means segmentation [11, 12].
The reasons for choosing the fuzzy c-means algorithm are threefold: This algo-
rithm does not make a sharp decision which area in the image belongs to which
class in the segmentation result but rather provides a probability of the member-
ship. This is crucial since the H&E-staining produces violet images with different
saturations for tumorous and non-tumorous parts. These parts sometimes over-
lap in colour-space and at this stage of the reconstruction a sharp decision for a
pixel which is given by other segmentation methods is not adequate. Therefore,
segmentations like c-means or mean shift cannot be used.

The second reason is that the colour saturation of the slices changes due to
instabilities in the staining procedure. Therefore, an overall (3D) segmentation
of the colour space is not possible, because the same colour can correspond
to different tissue types in different slices due to different slice thickness and
exposure time to the staining chemicals. The fuzzy c-means segmentation does
solve this problem by an adaptation of already calculated segmentation-class-
distributions and therefore provides constantly good tissue segmentation results
throughout the whole image stack.

The third reason for the choice of the fuzzy c-means method is that segmenta-
tion results are approximated memberships of the pixels to colour classes. Since
these membership probabilities are represented as grey-levels and not as binary-
values they provide smooth gradients which are important for the non-linear
image registration.



As mentioned before, the used fuzzy c-means method is able adapt a given set
of colour-centres as starting point for a new image and calculate a segmentation
on this basis. Therefore, in the segmentation-process of the complete image stack
we had to verify only one segmentation-result and for the rest of the images it
was not necessary to adjust any parameters.

In fig. 1(b) the main steps of the image processing chain are depicted, in
particular both the smoothing and segmentation step. The small layer of the
epidermis and the adjacent tumour tissue are too close together in colour-space
and are not separable by the segmentation. However, it was possible to extract
this layer automatically by taking the mask of the background of each slide and
enlarge it by the size of the epidermis. This step which is depicted in fig. 1(c)
completes the extraction of the tumour.

(a) (b) (c)

Fig. 1. (a) Shape of an unregistered (top) and the rigid registered (bottom) image-
stack. (b) The flowchart shows the main steps of the tumour segmentation. To demon-
strate the edge-preserving behaviour of the Total Variation Filter we took extreme filter
parameters for this example. Those are not necessary in the real process chain. (c) The
automatic extraction of the epidermis is possible with the grown background-mask of
the segmentation. This mask is is grown by the size of the epidermis and is then used
to mask out the regions in the segmentation result.

2.4 Reconstruction

At this point it is necessary to re-align local differences in tumorous parts of con-
secutive slides. During preparation, inevitable deformations occur, which need
to get compensated. For this purpose a non-linear registration step was applied
which was working on intensity images resulting from a combination of the ap-
proximate class membership for the cancer class obtained from the fuzzy c-means
segmentation and a low-level intensity image of the slide itself. Primarily we are



interested in a mapping of the tumour regions, but to get a consistent result,
the usage of the slide intensity in regions without tumour is essential.

As already mentioned in the segmentation section the registration of the ap-
proximate class membership from the segmentation procedure provides smoother
gradients which means less local gradients for the non-linear registration proce-
dure than one would obtain by hard segmented images.

The non-linear registration after the rigid registration step is necessary since
this method can stretch and bend parts of the image to bring the tumour tissue
of adjacent slides onto another. The method of choice at this point bases on the
optical flow and was firstly mentioned by Amit [13] and Modersitzki [9] and later
extensively used by Braumann and Kuska [5, 14].

In the process of registration the required displacement field u(x) : Ω → Ω
is found by minimising a joint registration criterion

min
u

(D(u) + αS(u)) (3)

consisting of the already mentioned distance measure

D(u) =
1
2

∫
Ω

[T (x− u(x))−R(x)]2 dx (4)

and smoothing term

S(u) =
1
2

2∑
i=1

∫
Ω

(∆ui)2dx. (5)

Using the calculus of variations, the solution for equation (3) will require to
solve a system of 4th order partial differential equations. Different approaches
are possible but in this work we used the multi-grid implementation which is
described in more detail in [5].

Likewise, we registered the whole set of images so that every slide is co-
registered onto its predecessor. Usually the image-stack is processed in a single
run and one (forward) direction. This procedure excels the chosen direction over
the opposite one which is adequate for relatively solid structures and tissue types.
The diffuse nature of the BCC and the fact that the skin is not completely
surrounded by stabilising tissue require a more symmetrical alignment of the
slices which is in this work ensured by not processing the images of the stack in
one registration run. Instead, we registered at first each image pair-wise with its
neighbour starting at the first image and processing in forward direction through
the stack breaking up the registration before it converges. Thereafter we proceed
backwards through the image stack with the same approach and repeated the
whole procedure three times.

2.5 Visualisation

After this last step the reconstruction chain is finished and the result is a 3D-
tumour-density field which is the basis for further morphological analysis and 3D



visualisation. In the case of this work we calculated an iso-surface of the largest
connected component of the tumour. For that purpose a 3D total variation filter
on the tumour density was used in order to smooth the data for visualisation.

After that, a volume labelling algorithm was utilised to mark connected parts
with an ID and calculate their volume. With position and volume of all objects
we could verify that the biggest component was the main tumour-object (see
fig. 3).

2.6 Quantification

To characterise the tumour we want to determine the dependency of the distance
distribution with respect to different angles and radii in spherical and cylindrical
coordinates, respectively. For both approaches we have chosen the point of origin
to be the centre of masses of the tumour projected onto the topmost horizontal
plane of the bounding-box (the xy-plane in our coordinate system). This centre
is depicted in figure 2(a) as point of intersection of the radii and in figure 2(c)
as centre of the concentric circles. It can be obtained by

m = Pxy

(
1
N

N∑
i=1

xi

)
, (6)

where xi are all positions of tumour in the data set and Pxy is the projection
onto the xy-plane.

In this work the primary focus is put on the invasion of BCC in the sur-
rounding tissue whereas the lateral propagation direction is not in the main
focus. Therefore, we are in the first rank rather interested in the dependency on
the polar angle as depicted in figure 2(a). With

tsp(x) =

(
arctan

(√
x2

1 + x2
2

x3

)
,
√
x2

1 + x2
2 + x2

3

)>
(7)

we can transform all positions xi of tumour in the data set by calculating

ri = tsp(m− xi). (8)

This list is now quantised into different angular intervals. Note that the angles in
this list are all in the main interval [0, π/2] since (i) in the hemisphere above the
centre m (a region outside the skin) there is no tumour and (ii) corresponding
radii left and right of m in figure 2(a) represent the same polar angles.

All collected radii of an angular interval can be treated as realisation of a
Γ -distributed random variable, since the Γ -distribution is the only distribution
going along with the power of the random variable. The probability density
function of a gamma distribution is given by

fΓ (r; k,Θ) = rk−1Θ
−k exp(−r/Θ)

Γ (k)
where Γ (k) =

∫ ∞
0

tk−1 exp(−t)dt (9)
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Fig. 2. While (a) is a sectional view of a virtual cutting plane orthogonal to the skin
surface, where the lines indicate different polar angles, (c) shows a plane parallel to
the skin with different radii. The different angles and radii are used in the density
plots (b) and (d) of probability distributions obtained by the quantification methods.
The origin of the coordinate system is in both cases the reference point m. The yellow
lines denote the P (X ≤ 0.95) border. (b) is a plot of the angular distribution where
angles are transformed back to Cartesian coordinates and (d) is a plot of the depth
distribution.

with the parameters (k,Θ). In order to estimate values for these parameters
we used an iterative maximum likelihood estimation (MLE) scheme [15]. The
parameters found by the MLE algorithm are the basis for distribution analysis
as is detailed in the following section.

Going beyond the angular analysis, more information can be extracted using
a method reflecting the depth distribution of BCC. We step in after the calcula-
tion of the reference point m (eq. 6), but now we are interested in the probability
of the tumour depth at a given distance from m. Therefore we use cylindrical
coordinates and analyse the depth distribution of different range intervals as
basically depicted in figure 2(c).

In this approach all positions xi of tumour are transformed by

ri = tcy(m− xi) where tcy(x) =
(√

x2
1 + x2

2 , x3

)
(10)



which are the first and the last component of cylindrical coordinates. The rest
of the approach is similar to the first method besides the fact that the estimated
tumour depth distribution is normal distributed.

3 Results

The present data-set is based on a serial section of a complete BCC which
consists of 193 slices. From this data-set 43 slices had to be excluded due to folds
or artifacts. The specimen has a volume of 80 mm3 and contains a segmented
tumour of about 2.6 mm3.

The 3D-iso-surface plot depicts the tumour component (fig. 3). To enhance
illustration it was artificially enlarged and embedded behind the surface of the
tissue specimen. Since we only have visualised the largest component, we had
to verify that all small segments previously masked out were indeed false posi-
tives. i.e., 3D-coordinates of them were taken, thereafter the dermatopathologist
classified all segments to be false positive.

As already mentioned, epidermis and tumour are not well separable in H&E-
stained slices using the applied staining-based segmentation method. Another
source for false-positive segmentation are hair follicles. While the epidermis can
be identified by its closeness to the tissue boundary and therefore can be masked
out by the above mentioned steps, hair follicles are identifiable due to their
characteristics in the final reconstruction.

A hair follicle is an epidermal sheath that surrounds the hair. Sebaceous
glands are usually attached to the side of a follicle. Their oily secretion enters
the follicle and follows it to the surface. The hair grows from the bulb, swollen
lower end of the follicle. The bulb is invested with blood vessels and nerves.
Due to these typical histological characteristics they can easily identified and
extracted from the volume.

A new method for the non-linear registration of the slice stack in several runs
with different directions in the slice stack has been introduced. The new method
has shown to work well with diffuse cancer structures like the BCC.

4 Discussion

This work has successfully given a proof-of-principle for an image processing
chain for a 3D-reconstruction of BCC. The starting point was an H&E stained
large serial histological section from paraffin embedded specimen.

Unlike established microscopic imaging techniques such as confocal laser
scanning microscopy (CLSM), or the bread leaf sectioning technique as applied
in histopathological routine, in Mohs micro-graphic surgery [4] used by Braun [7],
our new approach relying on histological serial sections allows for (i) a complete
tissue volume reconstruction, (ii) visualisation of the whole tumour including
surrounding tissue and (iii) quantification of statistical properties.

CLSM, however, cannot provide a sufficient penetration depth of several mil-
limetres. The bread leaf sectioning obviously takes far too less (non-adjacent!)



Fig. 3. An iso-surface plot of the reconstructed BCC (red) embedded behind the surface
of the tissue specimen (green).

sections for registration-based reconstructions. Mohs surgery relies on cryosec-
tions and uses horizontal sectioning, hence the method, besides the flat-bed
scanning and manual tumour delineation as done by Braun [7], will not provide
sufficient preparation quality as can be obtained using paraffin embedding and
vertical sectioning, the latter preserving the epidermis.

Instead, our approach utilises virtual microscopy for image capture, as well
as state-of-the-art image processing methods for the successive image series reg-
istration in order to re-establish a 3D histological data-set. We therefore applied
a sophisticated non-linear image registration algorithm (optical flow method) in
order to ensure that unavoidable distortions as occur during manual sectioning
and further slice preparation (staining-induced partial shrinking) can be com-
pensated within the image data.

Further, the staining-based automatic tumour segmentation (fuzzy c-means
method), even though ending up with a few false-positives as e.g. hair follicles, is
essential to treat data-sets consisting of hundreds of images per series. To replace
the remaining minimum of manual interaction to sort out respective false positive
regions would require knowledge-based approaches to get eliminated in future,
but this was not the focus of this work.



However, since segmentation quality is crucial for our method, in preliminary
work we have evaluated the reliability of tumour segmentation in H&E stained
single sections of 10 randomly selected BCCs of different sub-types. After care-
ful inspection of the results by the dermatopathologist it turned out that the
segmentation is appropriate to detect all tumorous parts. The sources of false
positive segmented tissue remained restricted to parts of epidermis, sebaceous
gland, and hair follicles.

The present proof-of-principle study demonstrates the first feasible approach
to elucidate the 3D tumour growth of a complete BCC in microscopic resolu-
tion. The volume data obtained by the presented method is considered highly
appropriate for further phenotypical investigations in order to morphometrically
describe tumour growth.

One such detail of interest is e.g. how an objective description of the spatial
tumour distribution can be obtained. For this purpose it is possible to determine
the dependence of the distance distribution with respect to different polar angles
in spherical coordinates. Through such a characterisation distances from the
centre of the BCC can be calculated which have a certain probability that none
of the tumorous tissue infiltrates into deeper regions of the skin.

For this approach we chose the origin m of the spherical coordinate system
to be the centre of masses of the tumour projected onto the topmost horizontal
plane of the bounding-box. This choice is motivated by the idea that it is possi-
ble for the surgeon to identify this centre on the skin. After the transformation
in spherical coordinates the data-set is quantised into different angular intervals.
Note that these angles are all in the main interval [0, π/2] since (i) on the hemi-
sphere above m there is no tumour and (ii) corresponding radii left and right of
m represent the same polar angles, since the azimuth dependence is not taken
into account.

The next step is to treat all collected radii of an angular interval as reali-
sation of a Γ -distributed random variable, since the Γ -distribution is the only
distribution going along with the power of the random variable. In order to
estimate values for these parameters we used an iterative maximum likelihood
estimation (MLE) scheme [15]. The parameters found by the MLE algorithm are
the base for distribution visualisation given in fig. 2(b). Since the dependence on
the azimuth was not taken into account, the visualisation is symmetric to the
centre. The colour ranges from black to white and denotes the probability inter-
val [0, 0.03]. The yellow line is the P95 border which states 95% of the tumour
is below this radius.

With methods like the presented one, another future application is the vali-
dation of new non-invasive high-resolution skin imaging techniques. In general,
for detailed objective insights into shape, structure and growth patterns further
investigations in 3D-quantification techniques for BCC are required as next step
after a 3D-reconstruction.
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