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ABSTRACT

One important application of image processing in medicine is to register tissue samples
onto another. Registering these high textured images with non-parametric methods leads
sometimes to solutions which are known to be suboptimal.

This thesis is concerned with a novel approach for image registration. We present
a projection technique for a curvature based non-parametric registration method which
suppresses unwanted vortices in the displacement field. This new strategy does not change
the registration method itself but it continuously leads the process of registration to a
vortex-free solution.

The grounding method was introduced in [Ami94], used in [BK05] and extended in
[BK06] with a vortex suppression term. Our new method calculates a Helmoltz decompo-

sition on the intermediate steps and projects out unwanted vortices.
This thesis describes the whole process of the image registration. Starting from the

mathematical description of the Helmholtz decomposition, its variational presentation and
the consequential partial differential equation, we will go on by looking at the discrete
approximation, parts of the implementation and the application on images.

Finally the results in comparison with the two other methods of Kuska and Braumann
[BK05, BK06] are presented. For this purpose, samples are given and deformed with
an artificial transformation. We will use these results and discover general properties,
advantages and drawbacks of the different approaches.
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CHAPTER 1

INTRODUCTION

PUBLIC NOTICE AS REQUIRED BY LAW:
Any Use of This Product, in Any Manner Whatsoever,

Will Increase the Amount of Disorder in the Universe.

Although No Liability Is Implied Herein, the Con-

sumer Is Warned That This Process Will Ultimately

Lead to the Heat Death of the Universe. [HS91]
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CHAPTER 1. INTRODUCTION 2

One of the biggest difficulties in software engineering for medical image applications
is to enable a computer to perform tasks which a physician can do in a fraction of a second.
A surgeon for example is able to identify a fracture on a radiograph in a very short time.
A pathologist would not need more than a few moments to mark and rate cancer when
doing a biopsy. All of these processes are very important in medicine and at least some
of them can be done automatically by a program.

Ulf-Dietrich Braumann et al, published an article in 2005 in which they describe an
algorithm to calculate a three-dimensional reconstruction of a tumor invasion front:

. . . the intention of this paper is to get an objective quantification of tu-
mor invasion based on three-dimensionally reconstructed tumoral tissue data.
The image processing chain introduced here is capable to reconstruct selected
parts of tumor invasion fronts from histological serial sections of remarkable
extent (90-500 slices)[BKE+05a]

The procedure involves taking a paraffin-embedded uterine cervix sample and slicing
it. The resulting slices are photographed and the digital images run through steps of regis-
tration and segmentation. The goal of the registration steps is to find a transformation for
two adjacent images so that they fit upon one another. By putting the registered and seg-
mented images ”digital-onto-another”, a three-dimensional reconstruction of the included
carcinoma can be developed. The detailed description of the whole process can be found
in [BKE+05a].

In this thesis we will deal with one particular step. The non-parametric curvature-
based registration of the tissue images. This is the last step in a chain of registration runs
containing a first rigid registration and a polynomial non-linear registration. A main aim
of this thesis is firstly to explain why the curvature-based registration needs improvement
and secondly to show the solution procedure and to give examples showing the advance.

In the first part the reader will be introduced to the mathematics used. Furthermore
a classification of registration methods is given and in this context some popular image
registrations are explained.

The second part of the thesis contains the motivation and the solution procedure of our
novel approach. We will give an insight into the mathematical depiction, the discretization
for digital images and parts of the implementation and conclude with the results which
contain a comparison to the already existing methods.



CHAPTER 2

MATHEMATICAL SETTING

ADVISORY:
There is an Extremely Small but Nonzero Chance

That, Through a Process Know as ’Tunneling’,

This Product May Spontaneously Disappear from Its

Present Location and Reappear at Any Random Place

in the Universe, Including Your Neighbor’s Domicile.

The Manufacturer Will Not Be Responsible for Any

Damages or Inconvenience That May Result. [HS91]

3



CHAPTER 2. MATHEMATICAL SETTING 4

To understand the details of our new registration method, a basic insight into mathe-
matics is required. Especially vector and variational calculus will play an important role.
Since one concern is to address this thesis to a wide audience most of the mathematical
methods will be explained detailed. Thereby as much hints and illustrations as possible
are given to prevent wrong assumptions and conclusions.

We try, while recognising it is a difficult task, to give a closed, step by step represen-
tation of the mathematics chapter ordered by difficulty. Especially in the section Image

Registration this is not always possible because it needs the calculus of variations. Fur-
thermore we make an effort to use a uniform notation so that the reader can gather the
meaning of formulas and symbols easily. The summary of these notations can be looked
up in the appendix.

2.1 DIGITAL IMAGES

From the mathematical point of view an image is a function that maps a coordinate from
a set Ω ⊂ Rd to color, gray-scale or other physical values where d ∈ N is dimension of
the domain. Since we only consider gray value images of the dimension two, the image

function or image R maps points to gray values:

R : R2 → R. (2.1)

The domain of images is in general not limited to dimension two. Data from a MRI
for instance are often volume data sets. Therefore one gets a value for every point in
the scanned body. That is the reason why this image function would have a domain in
the three-dimensional space. In contrast to that, normal x-ray pictures show only two-
dimensional versions of three-dimensional body parts.

The definition of an image R(x) states the following properties:

• The image R(x) exists only in a compact area Ω ⊂ Rd.

• An image has an appropriate value on every point. More exactly, the image data
must be in the interval 0 ≤ R(x) < ∞ for all x ∈ Rd.

• The integral
∫

Rd R(x)kdx where k > 0 must be finite.

In contrast to purely mathematical definition most pictures have no continuous repre-
sentation of their image function. Image data from a CCD camera, magnetic resonance
imaging or computer tomography are sampled, that is only a set of values from the image
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function is available. To get a closed form of the image function again, we could inter-
polate the values. Hence we get a closed representation, for instance as polynomial, and
therefore we can treat every image as a continuous function.

The last paragraph described how to get closed form from sampled data. Sometimes
it is necessary to have only a few values from a continuous picture. This may be the case
for instance when it is printed on a screen. We will call this sampling and consider it as
the evaluation of the image function on a defined set of points. In figure 2.1 for instance
an image is given which is sampled 15 times in every direction. The value on every grid
point is called pixel . Here we have 15 pixels in every direction and so the size of this
sampled image is 15× 15 pixels. Note that the expression dimension of an image defines
the size and not the domain.

Figure 2.1: An example of a digital image. Every grid point has a gray-
level value.

As one can see the terms digital image and image function are manifold and have
more applications than the common word image would suggest. We will use these terms
interchangeably but in almost every case we mean a function R : R2 ⊃ Ω → R that
represents the digital image.

2.2 IMAGE REGISTRATION

Image registration is a very important discipline in the field of image processing. The
name is commonly used to describe the process of making two or more images similar in
a certain sense. Let us introduce a more formal definition by giving first an example of a
real-world registration problem.

Assume you have two air photos of a town. One of the photos is up to date, but the
other one was taken years ago. For the pilot who took the newer one it was impossible to
have exactly the same position and direction as the former pilot.

Now the task is to compare these two photos in an automated process. This seems to
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be difficult when the photos are not similar because even if they show the same place, the
computer cannot recognize this. It is first necessary to bring one photo upon the other. In
the simplest case this is a rotation or a translation of the newer photo so that same streets,
buildings, etc. have the same coordinates in both pictures.

The process of bringing two pictures into one coordinate system by applying a trans-
formation to one is called image registration. The image that is used as basis for the
registration is called reference R whereas the other one is called template T .

To choose the best transformation T that maps the template onto the reference, a
criterion D is required that describes the quality of T. With the criterion two different
transformations can be compared. An often used criterion is the distance of the reference
R and the transformed template T(T ). The task is then to find the transformation Tmin in
a set Θ of possible functions that minimizes the criterion D between the sample and the
template.

Tmin = min
T∈Θ

D(R,T(T )) (2.2)

The transformation T takes effect on the image by transforming the coordinates. It
corrects or displaces the points of the image. This is given in a displacement field u :

R2 → R2 which provides the displacement vectors for every point of the image. The
registered template is then given by

T ′(x) = T (x− u(x)) (2.3)

The two images in figure 2.2 are an example for an easy registration problem. To
register the sample onto the template there is nothing more to do than to move the ’A’
along the arrow. After this translation the two images are congruent and their distance

vanishes.

Figure 2.2: An example of two images which can easily be registered
onto another.

The choice of those distance measures can be manifold. One commonly used function
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for it is the sum of squared differences.

D(u) =
1

2

∫
Ω

(R(x)− T (x− u(x)))2dx (2.4)

Equation 2.4 is often used as at least one part of the registration criterion. In many
cases the registration has to minimize a sum of criteria, where every part represents an-
other property. Notice that D has the signature D : Rd → R. In the variational calculus
this is called a functional and can be interpreted as a measure. In this case it measures the
similarity of two images when a transformation u is applied.

One important thing to understand is that there is not necessarily just one transforma-
tion which fulfills the criterionD. Potentially there exists more than one, or even infinitely
many of them. With respect to our last example it is not necessary to move all pixels of
the template. It would not change anything in the result when some of the surrounding
white pixels are not displaced. At this point the reader may figured out another dilemma.
When a registration uses the difference D as the only criterion, then a transformation
would minimize D if it does the following for all points x of the reference R:

• Find a point xs in the template T having the same or a similar value. From this it
follows that R(x) = T (x− u(x)) with u(x) = x− xs.

• Returning this displacement vector for the point, ensuring that now this point is
excellent registered.

This strategy produces probably a displacement field where the vectors are strewn at large.
But it definitely minimizes the distance of the two images. According to the definition of
image registration on page 6 this transformation would be of outstanding quality.

This problem is grounded in the fact, that our transformation is only restricted by the
registration criterion that represents the distance. If the transformation would be searched
only in a subset of all conceivable functions, it can force the solutions to be good. In
the case of this method, where the solution function is only restricted by fulfilling the
criterion D, it seems there is something more to do. The used criterion lacks an important
detail that suppresses clutter in the transformation.

Even in the case of the two air photos humans know much more about how the trans-
formation must look. Maybe one map is a bit rotated, shifted or stretched, but we know the
pixels of the transformed map must kind of stay together. We do not want displacement
rules which destroy the template too much.

For this purpose we consider another functional to measure the smoothness of a dis-
placement field u. Many different definitions of such a term are possible but all of them
have in common that they restrict the result in a certain sense.
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One important smoother we will use in this thesis was firstly introduced by [Ami94].
It makes use of the directional derivatives of the transformation which basically described
how fast u changes. If we restrict the change of u, we force the displacement to transform
points which are at close quarters similarly.

The smoother of Amit is given in equation 2.5. It uses the not yet introduced Laplace

operator ∆ which covers the used directional derivatives. Hence readers which are not
familiar with the notation may return to this point again after checking the next section
where a detailed introduction to vector calculus is given.

S(u) =
1

2

∫
Ω

(∆u1)
2dx+

1

2

∫
Ω

(∆u2)
2dx (2.5)

2.3 DISPLACEMENT FIELDS AND VECTOR CALCULUS

For most registration methods it is not necessary to use displacement fields to represent
the transformation. In the case of a rigid registration for example it is far more effective
to use matrices. The method used in this thesis is a non-linear one and displacement fields
are a suggestive way to represent the transformation. Therefore they were introduced in
the last section, even for the given easy example.

A solution displacement field for an image registration is a vector field which assigns
every point on the image plane to a vector. It is the displacement rule for the assigned
point. To apply a transformation to an image one has to move every pixel of it along its
displacement vector.

Since images here are two-dimensional the type of such a field u is in general

u : R2 ⊃ Ω → R2 (2.6)

So u is the short form of the vector-valued function u(x) that maps a point x ∈ P to a
vector u(x) [MV90, p. 421].

There are various ways to visualize vector fields. Two methods are used in this the-
sis to show features and compare fields. To enable the reader to interpret them, these
techniques will be explained in detail with examples in the following pages.

The first method to display vector fields is to draw an arrow of the direction u(x) at
selected points x ∈ Ω. These arrows represent the field u(x). The length of the arrow is
related to the length of the vector. In some cases it is better to use color to represent the
length of the vectors and leave the arrows at the same size.

We will call this visualization method simply vector field plot. It is used for fields
where only a few vectors are drawn, i.e. where the number of arrows one can draw before
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the whole plot becomes too confusing is limited.

Figure 2.3: The vector field u((x1, x2)T) = (−x2, x1)T plotted in two
different ways. The left picture shows the lengths of the vectors as lengths
of the drawn arrows while the right one uses colors.

Another often used visualization method for vector fields is the line integral convolu-

tion (LIC). First introduced 1993 [CL93] it became a very popular type of visualization,
especially for high density vector fields. The LIC has some advantages over the normal
vector field plot. Very complex situations of the field cannot be displayed with all details
using arrows. Especially in parts of the field like in the upper middle of the pictures in
figure 2.4 the LIC gives a much better impression of what is going on.

In a line integral convolution the field is displayed in a way a painter would do it with
a brush by following the direction of the vectors. To display the different vector lengths it
is possible to use different colors. In the sample figure 2.4 and in many other LICs in this
thesis the color spectrum goes from blue to red. Short vectors are represented with a blue
color in the LIC. The longer the vectors are the more red the color of this area becomes.

Figure 2.4: Two basic methods of vector field visualization. On the left
two pictures the field plot. In the first case the length of the vectors is rep-
resented in the length of the arrows. The second case shows this property
with different colors. The right picture shows the LIC of the same field.

There are two disadvantages of the line integral convolution; firstly the algorithm
is computationally expensive, secondly the direction of the field is lost. Two different
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charges are a good example for a field with a source and a sink1. Figure 2.5 demonstrates
that it is not possible to distinguish the negative from the positive pole in the LIC.

Figure 2.5: Example for the loss of the flow-direction in a line integral
convolution.

The vector field plot contains this information, because one can easily tell where the
arrows come from and where they end, but in a LIC both types of singularities would
look equally.

Because the images used have always a size equal or greater than 256 pixels in every
direction and the displacement field of the registration has the same dimension we are
reliant on the LIC. It is possible to revert to a normal field plot but only in some very
special cases or for demonstration purposes. However later we will see that the LIC of a
displacement field is fully sufficient to examine the properties we are interested in.

In the next section we will introduce some properties of fields and we will develop how
features can be expressed by operators. Most of those features are known by intuition. In
a water stream for instance everyone knows what a swirl will look like. We will connect
this knowledge with a mathematical description to use it in the later sections.

2.3.1 SPATIAL DIFFERENTIAL OPERATIONS

Several basic operations on fields exist. In the next section we will introduce them. To
simplify the notation of many formulas containing partial derivatives, we will make use
of the nabla operator which is given by

∇ :=


∂

∂x1

∂
∂x2

∂
∂x3

 (2.7)

1Sinks and sources are discussed later when the divergence of a vector field is introduced.
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THE GRADIENT

The gradient of a scalar-valued field is the vector field of its partial derivatives.

grad f(x) = ∇f(x) =


∂

∂x1
f(x)

∂
∂x2

f(x)
∂

∂x3
f(x)

 (2.8)

An example is given in the two-dimensional scalar-valued sample function f(x) =

exp(−(x2
1 + x2

2)).

Figure 2.6: A three-dimensional plot of the scalar-valued function
f(x) = exp(−(x2

1 + x2
2)).

For the gradient of f the partial derivatives with respect to x1 and x2 are required. The
gradient of this field is then given by

grad f(x) = ∇f(x) =

(
−2x1 · exp(−(x2

1 + x2
2))

−2x2 · exp(−(x2
1 + x2

2))

)
(2.9)

Figure 2.7: Field plot and line integral convolution of ∇f .

Figure 2.7 shows the gradient field and one can observe that it is the field where every
vector points in the direction of the greatest alteration of f .
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THE DIVERGENCE

For every vector field f(x) with the components

f(x) =

u1(x)

u2(x)

u3(x)

 (2.10)

we can define the divergence by

div f(x) = ∇ · f(x) =
∂

∂x1

u1(x) +
∂

∂x2

u2(x) +
∂

∂x3

u3(x) (2.11)

Let us point out the effect of this operator with a given example. Assume the field of
equation 2.12 and its field plot which is shown in figure 2.8.

f(x) =

(
2 e−(1+x)2−y2

(1− e4 x (−1 + x) + x)

−2 e−(1+x)2−y2
(−1 + e4 x) y

)
(2.12)

Figure 2.8: The vector field plot of equation 2.12.

The result of this operation on the field f is given in figure 2.8. By assuming that
this field is a flowing liquid, one could come to the conclusion that there is some kind of
source on the left and some sort of sink on the right side, but what exactly is a source or
a sink?

Observing these special points closer one could deduce that a source in the field is
a point which consists only of vectors that point out of it. More precisely, a source has
more outgoing vectors than incoming vectors. A sink would then be the opposite. In the
divergence plot 2.9 these special points of the vector field are special too because they are
a maximum and a minimum. It seems that the divergence represents how much a point
is a sink or a source. A divergence of zero would then indicate that we have as much
incoming flow as outgoing.
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Figure 2.9: The divergence field of equation 2.12.

And of course the exact definition is: The divergence of a vector field is a measure
of the existence of sinks and sources. If the divergence of a field is zero than it is called
solenoidal or source-free[LP05].

Now after the gradient and the divergence were introduced let us point out a third
differential operator which is a combination of these two.

THE LAPLACE OPERATOR

The divergence of a gradient field is called Laplace operator or Laplacian. Its name
comes from the French mathematician Pierre-Simon Laplace and it is denoted by the
Greek uppercase letter delta. In cartesian coordinates it is given by

div grad f = ∇ · ∇f = ∆f =
∂2f

∂x2
1

+
∂2f

∂x2
2

+
∂2f

∂x2
3

(2.13)

It is often used in partial differential equations in physics and it will appear in later
sections of this thesis.

THE CURL

For every vector field f we can find another field that measures the rotaion of it. The
notation of this operator differs from book to book. In German literature it is often called
rotation with the operator rot. We will use curl, so keep in mind that these two are
equivalent.

The curl can be expressed with the nabla operator and the cross product of vectors.

curl f = ∇× f =


∂

∂x2
f3 − ∂

∂x3
f2

∂
∂x3

f1 − ∂
∂x1

f3

∂
∂x1

f2 − ∂
∂x2

f1

 (2.14)

Notice that the curl of a vector field is a field of vectors, where the length of each describes
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the strength of the rotation and the direction of each vector is normal to the plane of
rotation.

Assume one is interested in the curl of the field of equation 2.15. It is possible to
imagine one would put a little piece of cork on the x1-x2-plane. What happens is that this
piece would start to rotate counterclockwise because the field on the right side is faster.

f 1(x) =

 0

x1

0

 (2.15)

Figure 2.10: A simple field with non-zero curl. Taking the point as a little
piece of cork on a flowing water surface, it would start to rotate. That is
grounded in the faster flow on the right side.

But what would the curl field look like? As described above the vectors of the curl
are normal to the rotation plane. This sample field engenders only rotations in the x1-x2-
plane. So all vectors of the curl have to be vertical to it.

The lengths of them should be related to the strength of the rotation. But the piece of
cork would rotate with the same speed everywhere in the field because the difference of
the flow on the left and on the right side is the same at every point.

Calculating the curl of the sample field f 1 confirms this deliberation.

curl f 1 =


∂

∂x2
f3 − ∂

∂x3
f2

∂
∂x3

f1 − ∂
∂x1

f3

∂
∂x1

f2 − ∂
∂x2

f1

 =

 0

0

1

 (2.16)

REMARKS

The last section gave an overview of differential operators. One condition to calculate
those operators is that the used functions are appropriate differentiable. Since we work
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on images we must ensure that we are able to calculate the derivatives.
Therefore the task of the following section is to introduce an approximation for derivat-

ing digital images. The way of representing images mathematically was introduced in
section 2.1 on page 4. Now this definition is used for introducing a method called finite

differences.

2.4 FINITE DIFFERENCES METHOD

By working with digital images we will often be confronted with the situation of having
discrete image values on a regular grid. There a calculation of derivatives as we know it
is not possible.

Finite differences are the easiest way to define approximations for the derivatives on
such discrete functions. For the required derivative of a point, the method interpolates this
value together with some surrounding sample points with a polynomial. This polynomial
can now be derivated and evaluated at this point.

One drawback of an interpolation polynomial is that it starts to oscillate when too
many grid points are used. This means that between these points the interpolation is
incredibly bad but the grid points match perfectly. A sample is given in figure 2.11. As
one can see the four values of the left image are interpolated very well, even in the space
between them. The higher order polynomial for the 15 values does not interpolate the
border area in an acceptable way.

Figure 2.11: Comparison of the interpolation of 4 and 15 points with
polynomials.

The consequence of this behavior is that it makes no sense to interpolate all values
of a discrete image at once. The result would be incredibly bad. Therefore, every image
value is interpolated separately using only a few surrounding grid points.

Assume we have a set of values y0, y1, . . . , yn which represent the height values in
figure 2.12. Since the pixels in the image are distributed on a regular grid the values in
the right figure have a distance h from each other.

Taking now y3 and two surrounding values on each side and interpolating them with
a polynomial, results in a function f(x) that goes through each of the five points and
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Figure 2.12: The values of the pixels in the marked line are plotted as
heights in the right image.

f(0) = y3. One can get this polynomial by using the Newton interpolation algorithm.
This calculation is not presented here but it is straight forward and can be found in many
mathematical books, for instance in [BSM05, MV90].

f(x) =
1

24h4
(−2h + x)(−h + x)(x(h + x)y1−

4x(2h + x)y2 + 6(h + x)(2h + x)y3)

+4(2h− x)x(h + x)(2h + x)y4+

x(−h + x)(h + x)(2h + x)y5

(2.17)

Figure 2.13: The plot of the function 2.17. It interpolates five values of
the set.

When f(x) is now derivated w.r.t. x and then evaluated at x = 0 we get an approxi-
mation of the derivative for y3.

d

dx
f(x) =

1

12h4
(h3(y1 − 8y2 + 8y4 − y5)−

h2x(y1 − 16y2 + 30y3 − 16y4 + y5)+

2x3(y1 − 4y2 + 6y3 − 4y4 + y5)+

3hx2(−y1 + 2y2 − 2y4 + y5))

(2.18)
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f ′(0) =
1

12h
(y1 − 8y2 + 8y4 − y5) (2.19)

This result can be used to define a partial derivative for images, because by derivating
in only one direction there is just one dependent variable. The other one is assumed to be
constant. Hence the approximation of the first order derivative of an image T (i, j) w.r.t. i

is given by:

∂

∂i
T (i, j) ≈ 1

12h
(T (i− 2h, j)− 8T (i− h, j) + 8T (i + h, j)− T (i + 2h, j)) (2.20)

In the same way one can find the approximation for the second order derivative. The only
difference is, that one has to derivate the interpolating polynomial two times. This will
result in following term:

∂2

∂i2
T (i, j) ≈ 1

12h2
(−T (i−2h, j)+16T (i−h, j)−30T (i, j)+16T (i+h, j)−T (i+2h, j))

(2.21)

Figure 2.14: The already known image of the A (upper left) together with
the LIC of its gradient field (upper right) and the derivative in horizontal
direction (lower left) and in vertical direction (lower right).

As one can see the finite differences are an easy way to approximate derivatives. Now
it is possible to calculate operators like the gradient for digital images.
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One special case was not considered up to now and this is what happens at the border
of an image. At any point where i = 0 for instance it seems not possible to calculate the
derivative w.r.t. i because terms like T (i − 2h, j) would lead to a nonexistent point of
the image. Several solutions are possible for that case. One common way is to take the
images as periodic and use the pixels from the opposite border for the missing ones.

In the sections of this thesis where finite differences are used, borders are handled
by taking one more inner point for one missing border point. That means we break the
symmetry of taking the same number of points from the left and the right for the interpo-
lation. A case discrimination is required. For all inner points, where enough neighbors
exist the normal formula is used. The border points are handled with another formula that
takes for instance one more inner point when not enough border points exist. In the case
of all T (0, j) for instance we would interpolate the points T (0, j), T (h, j), T (2h, j) and
T (3h, j) with a polynomial, derivate it and evaluate it at x = 0.



CHAPTER 3

TYPES OF IMAGE REGISTRATION

THIS IS A 100% MATTER PRODUCT:
In the Unlikely Event That This Merchandise Should

Contact Antimatter in Any Form, a Catastrophic Ex-

plosion Will Result. [HS91]
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In this chapter a basic overview about the different types of digital image registration
is given. The chapter is divided into three parts. The first one explains how methods can
be distinguished by the transformation they produce.

The second part describes image registrations which belong to parametric methods
and the third part deals with non-parametric image registrations.

The purpose of the chapter is to give a basic classification over image registration
methods and to explain some of them in more detail. What an image registration is and
how it can be defined was explained in section 2.2 and is not a topic of this chapter.

Notice that there are many different classification criteria and we picked out only
two of them. Registration methods can be distinguished for instance by the nature of
the transformation, domain of the transformation, optimization procedure and so on. A
very detailed description of how registrations can be classified is given by Maintz and
Viergever [MV98].

We divide them firstly by the nature of the transformation and secondly by a classifi-
cation into parametric and non-parametric methods. Furthermore some concrete methods
are explained to provide the reader a little deeper insight to what is possible.

3.1 TRANSFORMATION TYPES

By saying types, we basically mean the class of functions the transformation is in. Since
some registrations are for very basic mappings it is possible to represent them with easier
methods than displacement fields. A transformation which only includes rotations and
translations for example is called rigid and can be represented with a matrix and a vector.

With this approach every transformation can be categorized into four types. They
are called rigid, affine, projective and curved transformation. A function can also be a
composition of more than one of them and if so, is named after the more general type,
e.g. a composition of a rigid and an affine transformation is again an affine transformation.

The following sections will introduce the four categories and show which coordinate
transformations are possible with them.

3.1.1 RIGID TRANSFORMATION

A transformation is rigid when it performs only rotations and translations. This can be
expressed with a rotation matrix Q ∈ Rn×n and a translation vector b ∈ Rn.

Rotations matrices are matrices where

QQ> = 1 and detQ = 1 (3.1)
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Figure 3.1: Rigid transformation sample.

A function fR performing a rigid transformation by rotating and translating vectors x
is then given by

fR(x) = Qx+ b (3.2)

3.1.2 AFFINE TRANSFORMATION

Figure 3.2: Affine transformation sample.

In [MV98] an affine transformation is defined to be a function which maps parallel
lines onto parallel lines. By the usage of a more general matrix A with detA > 0 for the
rotation matrix of the rigid transformation we get a representation of this type.

fA(x) = Ax+ b with detA > 0 (3.3)

3.1.3 PROJECTIVE TRANSFORMATION

The significant property which states that a transformation is in the projective type class
is that lines are mapped onto lines. Figure 3.3 shows this behavior.

For the matrix representation of these transformations a (n + 1) × (n + 1) matrix is
required when we are in the n-dimensional space. These homogeneous coordinates are
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Figure 3.3: Projective transformation sample.

often used in computer graphics when projecting three-dimensional scenes onto a two-
dimensional screen [Str03].

3.1.4 CURVED TRANSFORMATION

Figure 3.4: Curved transformation sample.

In all previous types it was possible to give a matrix representation for the transfor-
mation. In general a curved transformation does not have such a closed form. For those
kinds, displacement fields are a very common representation. A displacement field as-
signs every point to a vector, the displacement vector. If u(x) is the displacement vector
for the position x, then the resulting point x′ is given by

x′ = x− u(x). (3.4)

Displacement fields, their usage and how they take effect on images is described more
detailed in section 2.3.

Figure 3.4 shows a sample of a curved transformation. Functions of this class map
curves onto curves. This property defines a smoothness criterion of the function because
mapping curves onto curves means basically that neighbouring points remain neighbour-
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ing to some extent. It may be useful to divide this class into subclasses. One property
which is important to know is whether or not the function is bijective.

In many applications of image registration, solutions which are not bijective can be
disgarded. Bijective functions avoid to displace two different points to the same place
which results in folds in the transformed image.

3.1.5 REMARKS

This short classification which was given in [MV98] provides only a coarse graduation.
As mentioned briefly, especially the curved transformation type contains a wide range
of image registration methods. Many of the methods given in [Mod04], for instance the
elastic, fluid and diffusion registration, are in this class.

Our registration method described in the later sections calculate transformations which
are of the curved type too. This is grounded in the way in which it will compute its so-
lution. Like the fluid registration for instance, we do not find a transformation which
matches a given form. We only give general conditions the solution has to fulfill and so it
is very unlikely and cannot be guaranteed that the found transformation is of a lower type
than the curved one.

3.2 PARAMETRIC IMAGE REGISTRATION

Parametric registrations are working with a finite set of parameters which have to be
found. We will see that these parameters are mostly the coefficients of basis functions of
the registration transformation.

Furthermore parametric methods work with a set of features. Those features exist in
the reference image and in the template. They are used to find a transformation, mapping
every feature in the template onto its corresponding feature in the reference image.

With this approach we can give a definition for the registration problem: Having m

different features in the template and in the reference where the ith feature in the reference
is denoted by F(R(x), i) then the registration problem is to find a transformation T with

F(R(x), i) = T(F(T (x), i)), i = 1, . . . ,m (3.5)

The transformation T maps the ith feature in the template onto the ith one in the reference.
This brings us to the question what are typical features of an image. So called landmarks
in the images can play the role of a feature. These landmarks may be artificial labels
inside the image, marking special positions. When they were set up before imaging they
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are called hard whereas soft landmarks are those which can be extracted from the image
data itself.

A popular example of hard landmarks is for instance little marks on the fingertips in
the x-ray image of a human hand. It is obvious that artificial marks are easy to recognize
in the image. In contrast to that the position of implicitly given landmarks may be very
hard to find.

The next section will go deeper into the procedure of a registration with explicitly
given landmarks.

3.2.1 LANDMARK-BASED METHODS

The landmarks of an image T (x) are on spatial positions in the image and since the
registration maps points in the template onto points in the reference we will treat the ith
landmark as a position

F(T (x), i) = xT,i, i = 1, . . . ,m. (3.6)

Corresponding to the difference of images that was introduced in 2.2 we can measure the
quality of a transformation ϕ(x) by observing how well it maps the features onto each
other. With the Euclidean norm ‖·‖ the added square differences of the landmarks are
given by

DLM[ϕ] =
m∑

i=1

‖xR,i −ϕ(xT,i)‖2. (3.7)

Note that there are no restrictions for the transformation T except that it has to map the
landmarks onto each other.

When we assume that ϕ can be expressed as a sum of basis functions then ϕ is char-
acterized by the coefficients of the basis functions.

ϕ =
n∑

k=1

αkψk, αk ∈ R (3.8)

The task is then to find the coefficients of ϕ, so that ϕ minimizes DLM for two given
images. For more details of the computation we refer to [Mod04, pp. 28-30]

One thing is really important: Since the above method has to find a transformation
which maps the landmarks onto another and since it has not to meet any other require-
ments the result of the image registration is highly dependent on the choice of the basis
functions ψk. Even when a given solution maps the landmarks perfectly, it does not say
anything about the quality of the registration. Modersitzki showed a sample where the



CHAPTER 3. TYPES OF IMAGE REGISTRATION 25

template was completely deformed but landmarks were registered fine. They said in their
explanation:

Although the quadratic polynomial is optimal with respect to the data,
it is not preferable for registration. This is because the quadratic is not bi-
jective, manifests oscillation, and does not reflect the monotonicity of the
data.[Mod04]

At this point a restriction for the transformation is necessary which forces the method
to choose a smooth solution. With such a smoothing term the landmark-based method
can be improved to the landmark-based smooth registration. Since the smoothing term is
used in our method too and its behavior is similar to the one here we refer for a deeper
insight to [Mod04] and in this thesis to pages 7 and 35.

3.2.2 PRINCIPAL AXES-BASED METHOD

In contrast to the previous method where the landmarks were explicitly given, another
approach is imaginable: The calculation of the landmarks out of the image. Detecting
them automatically can be a difficult matter and in many cases humans are still required.
A sample for a fully automated method is the principal axes transformation (PAT). The
PAT registers images by searching them for the principal axes and using them as features

for the landmark-based registration. The principal axes of a body or a shape are physical
properties which are related to the mass distribution within the body. These principal axes
are invariant with respect to rotations and translations. Therefore two identical images
which only differ in the position can be registered precisely with this method. Even for
other deformations the PAT can be reasonably good.

A drawback of the method is that there are situations possible where different shapes
share the same principal axes. Therefore these different images cannot be distinguished
by the feature and it is likely that a registration would fail.

3.2.3 REMARKS

The previous section discussed the parametric image registration whose methods share
the property that they try to find appropriate parameters. Additionally most of them are
working with external features which can either be artificial or be extracted from the
image.

A general drawback of those methods is that the detection of the so called landmarks
needs expert knowledge. If the landmarks are artificial and placed before imaging then
this is done by a human with the knowledge of for instance the anatomy of the specimen.
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Extracting the landmarks with the computer needs an expert too for at least adjust-
ing the parameters of the extraction algorithm. For our purpose which is the automated
registration of maybe hundreds of tissue images this is not suitable.

3.3 NON-PARAMETRIC IMAGE REGISTRATION

All non-parametric image registration techniques explained in this section follow the same
approach. They base on a variational problem which defines the registration criterion.
One part of this criterion is always a distance D(u) or more exact D(u, R, T ) which
measures the similarity of the reference R and the template T under the displacement u.

A direct minimization of the distance measure has some drawbacks: the
problem is ill-posed since small changes in the input data may lead to large
changes of the output data, the solution is not unique since the problem is not
convex, and the deformation may not even be continuous. [Mod04]

This behavior was already described on page 7. The answer is an additional smoothing

term S which forces the method to run into solutions that are more likely than others.
The choice of this smoother is the significant criterion that distinguishes the different
approaches of the non-parametric methods.

Nevertheless they share the same variational approach: If two images, reference R

and template T , and also a parameter α > 0 are given, then the registration problem can
be expressed in the functional

min
u
T (u) = min

u
(D(u) + αS(u)) . (3.9)

Four well known methods follow this approach. Some are strongly physically moti-
vated. The elastic registration is related to the behavior of an elastic body whereas the
fluid registration mimics the behavior of liquids. The optical flow was the grounding for
the curvature registration and the diffusion registration was based on some deliberations
about the smoothness of the displacement field.

In the following sections we will describe the basic idea of the elastic and the fluid
registration. We will not go into detail but give properties and drawbacks of them. For
the curvature registration a more detailed description is given because we will need this
knowledge through the rest of this thesis.
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3.3.1 ELASTIC REGISTRATION

As the name suggests the elastic registration mimics the behavior of an elastic body and
was first introduced by [Bro81]. Looking back to the rigid transformation, the volume
elements of the image plane were fixed to their neighbours. Therefore their position
regarding to their neighbours was still the same after transforming the image.

The approach of an elastic body is different. The volume elements can change their
position with respect to the properties of the elastic material. When an external force is
applied to such a body, it can be deformed. At the same time when a force is applied a
property of the body, called the inner stress or tension changes. This influences the shape
of the body too, so that it poises in an appearance where inner stress and external forces
are in an equilibrium.

Therefore the registration uses a smoothing term which represents the elastic potential
of the displacement field u.

Sel(u) =

∫
Ω

µ

4

d∑
j,k=1

(
∂xj

uk + ∂xk
uj

)2
+

λ

2
(div u) dx (3.10)

The two parameters µ and λ denote the Lamé constants which are used to define what
elastic properties the transformation should have. When Sel is used as the smoother of the
registration, a solution u has to minimize a sum where one part is

f = µ∆u+ (λ + µ)∇div u (3.11)

By expanding f to its components one sees that the parts are coupled in the last cross
derivative term.

fx1 = µ

(
∂2

∂x2
1

ux1 +
∂2

∂x2
2

ux1

)
+ (λ + µ)

(
∂2

∂x2
1

ux1 +
∂2

∂x1∂x2

ux2

)
fx2 = µ

(
∂2

∂x2
1

ux2 +
∂2

∂x2
2

ux2

)
+ (λ + µ)

(
∂2

∂x2
2

ux2 +
∂2

∂x1∂x2

ux1

) (3.12)

The variational calculus states that a minimizer of equation 3.10 is a solution of the
Euler-Lagrange equation. Therefore the Navier-Lamé equation 3.11 is a result of 3.10.
The registration problem for the elastic method is to find a transformation u which mini-
mizes the functional

min
u
T el(u) = min

u

(
D(u) + Sel(u, µ, λ)

)
(3.13)
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with given Lamé constants µ and λ. It is a method whose impelling force is the require-
ment to minimize the distance between the images and it is restricted or regularized by
the laws of an elastic body.

Details about the method can be found in [Bro81] and [Mod04]. We will not follow
these calculations but give some general remarks about the method.

Following Modersitzki who said: ”The regularizer is very restricted, [. . . ] For very
dissimilar objects, elastic registration is not the method of choice. The distance measure
may not be reduced sufficiently;”. The method works fine for many applications but if
the deformation of the images is too heavy, the registration fails. This is because on a
certain level of deformation the inner stress raises the smoothing term in a way that this
transformation is not a minimizer of the functional.

Therefore one typical test, mapping a filled circle onto a ’C’ is not possible with the
elastic registration. Nevertheless in more realistic samples the method yields good results.

3.3.2 FLUID REGISTRATION

The fluid registration has, as with the the elastic one, an underlying real world model
which is adapted from the behavior of liquids. Like in the elastic registration too, the
impelling force of the fluid registration is the endeavor to minimize the distance between
template and reference image. The difference between them is the form of the regularizer
or smoother. This smoothing term forces the registration to satisfy the assumptions stated
in the model of fluid mechanics. These are

• The law of the conservation of mass which states that the mass of a closed system
remains constant, regardless what happens inside.

• The law of the conservation of the momentum. This law states that in a closed sys-
tem, the momentum which is the product of mass and velocity cannot be changed.
Note that a closed system is one which is not affected by external forces.

With the knowledge of the elastic registration one can find easily a variational ap-
proach for the fluid registration. Regarding the images as a set of particles then for the
elastic registration one can state that adjacent particles remain neighbouring in a certain
manner after transformation. For the fluid registration a similar property exists: In a flow
of a liquid, adjacent particles have related velocities. Since the velocity of a particle is the
derivative of its position w.r.t. the time, one can simply define the regularizer for the fluid
registration with the help of the elastic smoother.

Sfl(u) = Sel
(

∂

∂t
u

)
(3.14)
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For this reason the resulting equation for the smoothing term is given by

ffl = µ∆ut + (λ + µ)∇div ut. (3.15)

For relevant details about the physical derivation of the formulas we refer first of all to the
thesis of Bro-Nielsen and related papers [BNG96, BN96]. Nonetheless Modersitzki pro-
vides a compact presentation from the theory up to the implementation details [Mod04].

Since the fluid registration mimics the behavior of a liquid it is possible to register
almost every reference-template combination. This is an advantage in some special ap-
plications where the fluid registration works very well. In general and in many medical
applications an unlimited flowing of the template into the reference image does not match
the reality.

In our special case it means that slices of a specimen do not act like a fluid at any
time. For this reason the fluid registration is not the method of choice in 3-D tumor
reconstruction.

3.3.3 CURVATURE-BASED REGISTRATION

The previous two methods have some general drawbacks. They are useful for special
applications. The elastic method is often too stiff and therefore unable to repair greater
deformations.

On the other hand the fluid registration can handle most deformations. This is not
wanted in every case because very often a set of presumptions were made to the kind of
deformation. Especially in medical applications it is very unlikely that organs and tissue
act like fluids. With the fluid registration it is possible to register almost every set of
images which is not wanted in the most cases.

Beside this, another property came out to be a drawback. The regularizers of the
elastic, the fluid and the diffusion1 registration is very dependent on the initial positions
of the images. That means, this method is error prone when the deformation contains an
affine transformation.

Assume we have such an affine deformation. The displacement field that solves this
problem is then of the form

u(x) = Ax+ b, with A ∈ R2×2, b ∈ R2 (3.16)

Taking now elastic potential from equation 3.10 and consider it has to rate such an

1This method will not be explained herein. Nevertheless it is sharing this drawback with the fluid and
elastic registration.
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affine transformation. By putting the displacement of equation 3.16 in the elastic regular-
ization term we get

Sel(u) =

∫
Ω

µ

4

(
(a11 + a11)

2 + 2(a12 + a21)
2 + (a22 + a22)

2
)

+
1

2
λ(a11 + a22) dx

=

∫
Ω

µ

(
a2

11 +
1

2
(a12 + a21)

2 + a2
22

)
+

1

2
λ(a11 + a22) dx

(3.17)

One can see that the regularization term will penalize such deformation because an
affine transformation will not necessarily zeroize equation 3.17. Only a special form of
A will provide this.

u = Ax+ b with A =

(
0 c12

−c12 0

)
⇐⇒ Sel(u) = 0 (3.18)

This is the reason why a pre-registration is unavoidable when images should be regis-
tered with one of these methods. The now introduced curvature-based registration is more
robust against such initial conditions. It is not the case that pre-registration steps become
unnecessary but the new form of the regularizer will not penalize affine transformations
in the displacement.

The idea of the curvature regularizer comes originally from a very early work of Horn
and Schunck [HS81]. Their method for determining the optical flow in a series of images
was as ill-posed as the non-parametric image registration without a smoothing term. The
optical flow in their work has to fulfill some smoothness criteria too because ”If every
point of the brightness pattern can move independently, there is little hope of recovering
the velocities” [HS81].

Optical flow is the movement a brightness pattern makes, assuming two images show-
ing the same object on different points in time. The result is a vector field representing
the motion of the brightness pattern. A movement of the object does not always cause a
change in optical flow. A rotation of a uniformly colored sphere around its center for in-
stance does not change its optical flow. Therefore they suggested a smoothness constraint
which does not penalize such (affine) transformations and made usage of the squared
Laplacians. This was reasonable because it goes along with a smooth, continuous result
wich can include affine transformations.

In simple situations, both Laplacians are zero. If the viewer translates
parallel to a flat object, rotates about a line perpendicular to the surface or
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travels orthogonally to the surface, then the second partial derivatives of both
u and v vanish [. . . ] [HS81]

Their idea was picked up by Amit who used this approach to develop a new ”non-
linear variational problem for image matching” [Ami94]. Amit gave the first version
of the smoothing term Scurv which was used later by Fischer and Modersitzki in many
different publications (e.g. [FM03a, FM02a, FM02b]).

Scurv(u) =
1

2

∫
Ω

(∆u)> · (∆u) dx (3.19)

The name, curvature-based registration, was also introduced by Fischer and Moder-
sitzki in [FM03a]. It was chosen because the integral in 3.19 can be interpreted as some
kind of curvature of the components of u. Nevertheless it comes from the optical flow
and has no direct physical motivation like the fluid or the elastic registration.

One significant advance of the new smoothing term was that it does not penalize affine
transformations because the second order derivatives vanish there.

∀A ∈ R2×2, b ∈ R2 : u = Ax+ b =⇒ Scurv(u) = 0 (3.20)

Strictly speaking this should make an initial pre-registration step redundant but ac-
tually it is better to perform at least a rigid pre-registration before running the non-
parametric curvature-based step. The reason is twofold. Firstly we will see that one has
to choose boundary conditions for the calculation of the solution. If some presumptions
on the boundary are made, for instance that we have a zero displacement there, then it is
no longer possible to get a solution which includes for instance a translation. Kuska and
Braumann have already pointed this out:

None of the boundary conditions is consistent with a rigid transformation
that includes a rotation around a point c within the image, i. e. u(x) =

R(x− c) + t, with the rotation matrix R. The only reason for this choice of
boundary conditions is that a fast solution method exists for them. [BK05]

Secondly many of the solution methods that are presented by Amit [Ami94], Fischer
and Modersitzki [FM02a, FM02b, FM03a] or Kuska and Braumann [BK05, BK06] use
an iterative approach that starts from the zero displacement field and ”moves” toward a
solution. It is then better when the images are pre-registered and close to the desired
solution.

The functional J is non-linear and may have many global and local min-
ima. In the sequel we will be mainly interested in finding local minima of
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J close to the initial point U(x) ≡ 0, which corresponds to the identity
map. [Ami94]2

The boundary conditions that were pointed out are a requirement to solve the PDE
that is defined by the joint registration criterion of the curvature-based registration.

min
u
T (u) = min

u
(D(u) + Scurv(u)) (3.21)

This PDE follows directly according to the variational calculus which states that the
first Gâteaux derivative of a minimizer u of equation 3.21 must be zero. The calculation
of this functional derivative is shown in the next chapter where we explain in more detail
the solution procedure.

−α∆2u(x) + f
(
x,u(x)

)
= 0 (3.22)

with
f(x,u(x)) =

(
R(x)− T

(
x− u(x)

))
· ∇T

(
x− u(x)

)
(3.23)

and
∆2u(x) =

∂4u

∂x4
1

(x) + 2
∂4u

∂x2
1∂x2

2

(x) +
∂4u

∂x4
2

(x). (3.24)

This equation is called the biharmonic or bipotential equation and is well studied. The
biharmonic equation can not be solved directly and therefore other approaches are used.
One popular method is to introduce an artificial time parameter and use the new equation
to iterate towards the solution. This proceeding is described in section 4.2.

Finally, the behavior of the curvature-based registration can be described to be in the
middle between fluid and elastic registration. Since the fluid registration allows extremely
large deformation, the elastic one can handle only small, locally bounded displacements.

The behavior of the curvature-based registration is close to the elastic one but allows
larger deformations. Affine transformations are not penalized by the curvature smoother
and, respecting the boundary conditions, a deformation can include such transformations.

3.4 REMARKS

The last chapter was a short introduction to the wide area of image registration. Since a
great many applications need registration methods which are improved to solve a specific
problem, the field of what is possible in this area is extremely large. In most cases these
special solutions only change the behavior of a basic method or extend them.

2The functional J in the work of Amit is the same as the functional T in equation 3.9.
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For a deeper insight into this area we suggest to read for instance [MV98]. Maintz and
Viergever provide a very sufficient classification structure and they refer to a large amount
of publications. With this overview what is possible in image registration for medicine
one can go deeper in reading the details of special methods.
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4.1 MOTIVATION

The method presented in this thesis extends an image registration procedure described
by Braumann and Kuska [BK05]. They showed a simple method for a non-parametric
registration and used it for instance in the three-dimensional reconstruction of carcinoma
[BKE+05a]. By providing high textured tissue images to this registration method, one
significant problem arose. The images seemed not to be registered in the way they were
supposed to be. The registration step seemed to have a problem with images that con-
tain many similar structures. In those regions an anomalous high amount of vortices in
the displacement field can be observed. The question is whether they are caused by the
difference of the images that are registered or whether these vortices have other reasons.

To find this out we have to take a look at the accruement of the images. Details of the
whole process are given on page 1287 of [BKE+05a]. Here the reader will only find a
short summary, sufficient enough to understand the conclusions.

The images are photographs of a sliced human cervix which was embedded in paraffin.
The image registration is used to register the pictures of the slices onto another in the same
order as they were cut. In the cutting process itself a kind of a blade will slide through
the object and separate one slice. This may squeeze the tissue a bit but it is really unlikely
that regions are twisted.

The single slice is put under a microscope and the region to photograph is selected
manually. In this step it is obviously not possible to position every slice in the same
way. Thus two sequenced slices differ in the place and it may happen that they are ro-
tated. These global rotations have nothing in common with the local vortices that arise
in the displacement field because when the non-parametric registration starts the global
translations and rotations were already extracted by previous registration steps.

The sequence of these procedure steps is the reasons why vortices in the registration
are very unlikely and should not be part of the solution. To improve the method a first
approach was chosen containing a vortex suppression term in the variational equation
[BK06].

min
u
T (u) = min

u
(D(u) + V(u) + Scurv(u)) (4.1)

The terms D and Scurv are the already introduced functionals for minimal difference and
smoothness of the transformation (see page 7 and 8). V is a measure for the total amount
of vortices in the field u and it is defined by

V(u) =
ω

2

∫
Ω

(
∂u2

∂x2

(x)− ∂u1

∂x2

(x)

)2

dx. (4.2)
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In fact, to suppress vortices with a term in the variational equation has some disadvan-
tages. The first one is the term itself. It describes not exactly what actually should be
done. We found out that exact solutions of those kind of registration problems do not
contain any vortices. By only suppressing them it is still possible to get a not vortex free
displacement field. This depends primarily on the setting of ω. However, it is not always
a good choice to take high values for ω because it is only one term in a sum. If it is chosen
very high, the influences of the other two terms may disappear. It is possible that this ends
in situations where a vortex-free displacement field goes at the expense of smoothness and
minimal difference.

Another drawback is the additional parameter which was introduced by the term. The
job of this image registration is supposed to register not only single pairs of images. It
is supposed to be used in an automated process that registers many images consecutively.
It would slow down the procedure when the vortex suppression term requires a manual
justification in some registration steps.

These properties of the vortex suppression caused the search for a better solution. The
idea was to turn back to the first equation

min
u
T (u) = min

u
(D(u) + αScurv(u)) (4.3)

and extend it with a vortex extraction. The following sections detail how it was possible
to realize this during the solution procedure.

4.2 A SOLUTION PROCEDURE FOR THE

CURVATURE-BASED REGISTRATION

As said in the previous section the method extends a solution introduced in [BK05]. It
is grounded on an idea that the displacement field should fulfill the criteria of minimal
difference between the registered images.

D(u) =
1

2

∫
Ω

(R(x)− T (x− u(x)))2dx (4.4)

and smoothness
Scurv(u) =

1

2

∫
Ω

(∆u)T · (∆u)dx. (4.5)

To find the function u that solves the variational problems given in equation 4.3 the func-
tional derivative δT (u; g) is required. Similar to the derivative of a function w.r.t. a
variable it is possible to derivate a functional w.r.t. a vector g. This is called first Gâteaux
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variation [MV01, page 407]. For a solution u∗ of the variational problem a necessary
condition is

δT (u∗; g) = 0. (4.6)

Similar to the procedure of finding an extreme value of a function, the first derivative of
the functional is calculated and equation 4.6 is solved.

δT (u+ εg) =

1

2

d

dε

∫
Ω

dx (R(x)− T (x− (u(x) + εg)))2 + α(∆(u+ εg)2

∣∣∣∣
ε=0

=
1

2

∫
Ω

dx (R(x)− T (x− (u(x) + εg)))2 ∂

∂ε
+ α(∆(u+ εg)2 ∂

∂ε

∣∣∣∣
ε=0

=
1

2

∫
Ω

dx 2(R(x)− T (x− (u(x) + εg)))∇T (x− (u(x) + εg))g+

2α(∆u+ ∆εg)∆g

∣∣∣∣
ε=0

=
1

2

∫
Ω

dx 2(R(x)− T (x− u(x)))∇T (x− u(x))g − 2α∆u∆g

=

∫
Ω

dx g ·
(
(R(x)− T (x− u(x)))∇T (x− u(x))− α∆2u

)

(4.7)

The derivated functional 4.7 will become zero when one of the factors in between the
integral gets zero. Therefore the registration transformation has to fulfill the following
PDE:

−α∆2u(x) + f
(
x,u(x)

)
= 0 (4.8)

with
f(x,u(x)) =

(
R(x)− T

(
x− u(x)

))
· ∇T

(
x− u(x)

)
(4.9)

and
∆2u(x) =

∂4u

∂x4
1

(x) + 2
∂4u

∂x2
1∂x2

2

(x) +
∂4u

∂x4
2

(x). (4.10)

A common approach to solve the highly non-linear equation 4.8 is to introduce an
artificial time parameter t with

lim
t→∞

u(x, t) = u(x) (4.11)
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The time dependent equation for the displacement u(x, t) is then given by

∂u

∂t
(x, t) + α ∆2u(x, t) = f(x,u(x, t)) (4.12)

At this point we have to consider that we are working on digital images. Therefore
we have to determine the discrete solution U with U (t) = u(xi,j, t) for i = 1, . . . N (`),
j = 1, . . . ,M (`). Furthermore, this method is a multi-resolutional approach and iterates
different discretization levels. These levels are denoted by a superscript on the discrete
field. ThereforeU (`)(t) with ` = 0, . . . , L denotes the field at the discretization level `. In
this notation ` = 0 is the coarsest grid an ` = L the finest grid. On the next discretization
level the meshpoints are doubled. This means N (`+1) = 2N (`) and M (`+1) = 2M (`).

For the changing to the next level we introduce two operators. The restriction of the
solutionU to the next coarser grid is denoted byR

[
U (`+1)(t)

]
= U (`)(t) and in the other

case P
[
U (`)(t)

]
= U (`+1)(t).

Notice that U describes displacements for the regular mesh and for this reason it is
not sufficient to resample U to get another discretization level. P and R have to perform
a scaling on the data.

For a time discrete version of equation 4.12 we will use two numerical methods for
differential equations. For y′ = f(t, y), an initial value y(t0) = y0 and a time step h, the
explicit Euler (eq. 4.13) and the implicit mid-point (eq. 4.14) rule is given by

yn+1 = yn + hf(tn, yn) (4.13)

yn+1 = yn +
h

2

(
f(tn, yn) + f(tn+1, yn+1)

)
(4.14)

On the coarsest level ` = 0 the discrete version of equation 4.12 with a time step h is
given by

V (0)(t+h)−U (0)(t) = −α h

2

(
∆2V (0)(t + h) + ∆2U (0)(t)

)
+hF (0)(U (0)(t)) (4.15)

In this equation we used the implicit mid-point rule to approximate the term α ∆2u(x, t)

and the explicit Euler for f(x,u(x, t)). The temporary approximation ofU (`) is denoted
by V (`) and the discrete approximation of f on the mesh points of level ` = 0 is denoted
by F (0).

The other levels up to the finest grid are calculated by equation 4.16. The difference is
that the implicit mid-point rule was used for the non-linear term F too. Notice that V (`)
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is substituted by the prolongation of the already calculated V (`−1) in the last term.

V (`)(t + h)−U (`)(t) = −α h

2

(
∆2V (`)(t + h) + ∆2U (`)(t)

)
+hF (`)

(
1

2

(
P [V (`−1)](t + 1) +U (`)(t)

)) (4.16)

When all levels up to V (L) are done the newU (l)(t + h) are determined by restricting
the result on the finest level to all other levels below.

U (L) = V (L)

U (`) = R
[
U (`+1)

]
` = L− 1, . . . , 0

(4.17)

After this cycle is complete the convergence of U (t + h) is checked. The time is
incremented by the step size h and the cycle is restarted until

∥∥U (L)(t + h)−U (L)(t)
∥∥ < ε, with ε � 1 (4.18)

The equations shown still contain the square of the Laplacian which has to be approx-
imated too. For this purpose Braumann and Kuska used equation 25.3.33 of [AS84]. The
stencil of this approximation is shown in figure 4.1.

Figure 4.1: Stencil for the discrete approximation of ∆2

For the calculation of the V (`) in every level one has to solve a linear system of
equations for the components of V (`). For a periodic boundary this computation can
be simplified by using the discrete Fourier transform. Since the components of V (`) on
different grid points become a multiplication by a frequency in the Fourier space, only
one equation has to be solved per mesh point. This property is explained more detailed in
section 4.3.2 where we use again this simplification.
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V (`)
m,n =

1

N (`) M (`)

M(`)−1∑
µ=0

N(`)−1∑
ν=0

V̂
(`)

µ,ν exp
(
2 π i

( m µ

M (`)
+

n ν

N (`)

))
(4.19)

With the Fourier coefficients of equation 4.19, the discrete approximation of the PDE
(eq. 4.16) can be rewritten. With β = α h/δ(`)4 where δ(`) is the space between two
mesh points in the level ` and ω

(`)
ν = 2 π/N (`) and ω

(`)
µ = 2 π/M (`) we get the following

equation for V̂
(`)

V̂
(`)

µ,ν(t + h) = −Û
(`)

µ,ν(t) +
6
(
2 Û

(`)

µ,ν(t) + h F̂
(`)

µ,ν

)
q(µ, ν; ω

(`)
µ , ω

(`)
ν )

q(µ, ν; ωµ, ων) = 6− 4 β

{
23 + 10 cos(µ ωµ) cos(ν ων)−

77

4
[cos(µ ωµ) + cos(ν ων)]

+
7

2
[cos(2 µ ωµ) + cos(2 ν ων)]

− 1

4

[
cos(3 µ ωµ) + cos(3 ν ων)

+ cos(µ ωµ − 2 ν ων) + cos(2 µ ωµ − ν ων)

+ cos(2 µ ωµ + ν ων) + cos(µ ωµ + 2 ν ων)
]}

(4.20)

A periodic boundary for the result U is not the only possibility. Especially in combi-
nation with the vortex extraction we will use a boundary where the first and third order of
derivatives vanish. For this purpose the discrete cos-transform can be used instead of the
full Fourier.

Nonetheless, the basic form of equation 4.20 will remain. Only the denominator
changes to q(µ + 1/2, ν + 1/2; 2ωµ, 2ων).

4.2.1 DRAWBACKS OF THE METHOD

When the curvature based image registration was tested it came out that some properties
of it do not really match the requirements. As shown in the motivation section, vortices
arise in the transformation where there should not be any. To verify where they exactly
arise, test images and test transformations were applied.

In these tests the samples were deformed with a transformation that is vortex-free. At
best the registration procedure should find the inverse transformation which is vortex-free
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too.
Equation 4.21 gives such a function that is vortex-free, namely the frog-eye transfor-

mation.

ξ(x) =

x r ≥ 1

1+
√

x2
1+x2

2

2
x otherwise.

(4.21)

The advantage of using this transformation is the fact that the inverse of it is known.
Thus it is easy to recognize transformation errors of the method. The inverse of the frog-
eye is defined by

ξ−1(x) =

x r = 0 or r ≥ 1

−1+
√

8r+1
2r

x otherwise.
(4.22)

To give a visual impression of what this transformation looks like, a regular grid is
taken and transformed. When the image of the regular grid is denoted with T (x) then the
frog-eye image is f(ξ(x)). The result is showed in figure 4.2.

Figure 4.2: Visualization of the frog-eye transformation.

After choosing an appropriate deformation function one should look for suitable im-
ages. Although the registration has to work with images of tissue, they are not used here.
The problem with those images is that an untrained human eye is not able to recognize
registration errors. Far better are pictures of animals because everyone has an intuition
for them. Leopards and tigers are excellent samples. Their textured coat provides those
high structured regions in the image where the registration method makes mistakes.

Figure 4.3 shows such an image. Particularly the head of the leopard contains a regular
pattern of many similar spots. We will see in the results that these regions will exercise
errors in the method.

To verify the quality of the registration three basic visualizations are used. The first
one, the line integral convolution, was already introduced in section 2.3. It is used here to
visualize the displacement field u of the registration.
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Figure 4.3: An image of a snow leopard which is transformed (right) with
the frog-eye transformation

This line integral convolution can be displayed in a three-dimensional way by plotting
the lengths of the vectors of the displacement field as height values. The LIC is then put
on this height field as texture.

The third method is grounded on the fact that the inverse transformation of the frog-
eye is known. Hence it is possible to subtract the displacement field u from the exact
solution ξ−1 and plot the lengths of the resulting vectors as a height field. This plot
allows us to locate the exact positions and size of the error-prone regions.

Figure 4.4: The result of the registration of the leopard with the curvature
based method.

Figure 4.4 shows the registered leopard. In the upper half image, in the region of nose
and eyes, the method worked incorrectly. This can be seen in the line integral convolution.
Actually the inverse transformation does not contain any vortices.

The reason for these vortices in the solution is that the method does not find the trans-
formation in one step but in many steps. It begins with a zero solution and solves conse-
quently equation 4.12. This can be seen as a flow into the solution.

When the method works on a region with many similar structures, situations are likely
where many directions of the solution flow are possible. It maybe flows into local minima
which are not part of the solution and when this occurs it is very likely that the method
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will not find the path to the correct solution again.

Figure 4.5: Visualizations of the results of the leopard image registration.
The left picture shows the absolute errors. The right one is the LIC of the
displacement mapped on the height field, representing the lengths of the
displacement vectors.

This is the reason for the behavior of the registration with the image of the leopard. In
the area of the deformed head several branches for the solution exist which lead to very
suboptimal results. That is grounded in the fact that the spotted coat causes local minima.

The error plot in figure 4.5 shows that exactly in those regions the found transforma-
tion differs from the inverse of the frog-eye transformation. The idea was now to lead

the solution flow on a path where vortices are impossible. In every time step vortices are
projected out of the partial solution and therefore the solution cannot flow into such a bad
branch.

The next section gives a projection method for vortices. We start with the mathemat-
ical description of the method and go on with the method of discretization the formula.
Finally the basic algorithm is presented so that the reader has a detailed insight in the
procedure.
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4.3 PROJECTION TECHNIQUE FOR VORTICES

4.3.1 HELMHOLTZ DECOMPOSITION FOR VECTOR FIELDS

Figure 4.6: Example that shows how a field can be split in its compo-
nents. The upper image is the sum of the other three. Notice that the left
one is the solenoidal, the middle the irrotational and the right one is the
homogeneous component of the field.

To realize the projection a theorem is required which comes from Hermann von Helmholtz.
This fundamental theorem of vector calculus states that every vector field which is suffi-
cient smooth and decays fast enough can be decomposed to its irrotational and solenoidal
components.

v = −∇ϕ +∇× p+ h (4.23)

In equation (4.23) the term −∇ϕ is the irrotational or the curl free component and the
term ∇× p is the solenoidal or divergence free component of the field v.

The vector field h is the homogeneous part whose divergence and curl is zero:

div h = curl h = 0 (4.24)

One can give a simple proof by substituting the definitions of the differential operators.
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If ∇× p equals the rotational part of v then it should be a result of equation (4.23) when
applying the curl operator to it.

∇× v =


∂

∂x1

∂
∂x2

∂
∂x3

×
 − ∂

∂x1
ϕ

− ∂
∂x2

ϕ

− ∂
∂x3

ϕ

+∇× (∇× p) +∇× h︸ ︷︷ ︸
=0

∇× v =

 − ∂2

∂y∂z
ϕ + ∂2

∂y∂z
ϕ

− ∂2

∂z∂x
ϕ + ∂2

∂z∂x
ϕ

− ∂2

∂x∂y
ϕ + ∂2

∂x∂y
ϕ

+∇× p

∇× v = ∇× p

(4.25)

In the same way one can prove that −∇ϕ is the irrotational component of v.
Since we operate on images our working space is only two dimensional. Therefore

the rotational field ∇ × p and the divergence field −∇ϕ only have values in the first
two coordinates. For this reason the vector potential p has only one entry in the third
coordinate.

p =

0

0

p

 (4.26)

p is a scalar field and describes the magnitude and the direction of the rotation in every
point (x, y, 0)>.

∇× p(x, y) = ∇×

 0

0

p(x, y)

 =

 ∂p(x, y)/∂y

−∂p(x, y)/∂x

0

 (4.27)

Now everything is prepared to formulate the following variational problem: We are trying
to find a vector field that minimizes the distance to our original field and which is per def-
inition a vortex-only field. This can be expressed in a variational equation that minimizes
the following functional.

F(p) =
1

2

∫
Ω

|v −∇× p|2dx (4.28)

Since p is a vector potential and has only one non-zero component in the third di-
mension it is possible to expand the expression in 4.28 and change the equation to be a
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functional in p.

F(p) =
1

2

∫
Ω

(
v1 −

∂

∂x2

p

)2

+

(
v2 +

∂

∂x1

p

)2

dx (4.29)

The first Gâteaux variation is given by

δF(p + εg)

=
1

2

∫
Ω

dx

((
v1 −

∂

∂x2

(p + εg)

)2

+

(
v2 +

∂

∂x1

(p + εg)

)2
)

∂

∂ε

∣∣∣∣∣
ε=0

=
1

2

∫
Ω

dx2

(
v2 +

∂

∂x1

(p + εg)

)
∂

∂x1

g − 2

(
v1 −

∂

∂x2

(p + εg)

)
∂

∂x2

g

∣∣∣∣∣
ε=0

=
1

2

∫
Ω

dx 2

(
v2 +

∂

∂x1

(p + εg)

)
∂

∂x1

g − 2

(
v1 −

∂

∂x2

(p + εg)

)
∂

∂x2

g

∣∣∣∣∣
ε=0

=

∫
Ω

dx

((
∂

∂x1

v2 +
∂2

∂x2
1

p)

)
−
(

∂

∂x2

v1 −
∂2

∂x2
2

p

))
g

(4.30)

A function p minimizing this derivative has to fulfill the equation that follows directly by
setting the term in the integral to zero.

0 =

(
∂

∂x1

v2 +
∂2

∂x2
1

p)

)
−
(

∂

∂x2

v1 −
∂2

∂x2
2

p

)
∂2

∂x2
1

p +
∂2

∂x2
2

p =
∂

∂x1

v2 −
∂

∂x2

v1

∆p = Φ(v)

(4.31)

Concluding one can say: To find the potential field p that represents the strength and the
direction of the vortices in a vector field v, the Poisson equation given in 4.31 has to be
solved.

4.3.2 APPROXIMATION FOR DISCRETE VECTOR FIELDS

Since we do not operate with analytic functions but with discrete displacement fields it is
not possible to calculate the Poisson equation directly. How to approximate the derivatives
on discrete data was presented in section 2.4 of the background chapter.

The displacement field is a set of vectors on a regular mesh and is denoted as u[i, j]

with i = 1, . . . ,M and j = 1, . . . , N . To find the discrete potential p[i, j] for every point
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(i, j) the following approximation for the first order derivatives in direction i is used:

∂

∂i
v2(i, j) ≈

1

12h
(v2[i− 2h, j]− 8v2[i− h, j] + 8v2[i + h, j]− v2[i + 2h, j]). (4.32)

The second order derivative which is required for the Laplace operator is approximated
by

∂2

∂i2
p[i, j] ≈ 1

12h2
(−p[i−2h, j]+16p[i−h, j]−30p[i, j]+16p[i+h, j]−p[i+2h, j]).

(4.33)

These approximations are used to form a discrete version of the Poisson equation given
in 4.31.

1

12h2
(−p[i− 2h, j] + 16p[i− h, j]− 30p[i, j] + 16p[i + h, j]− p[i + 2h, j]−

p[i, j − 2h] + 16p[i, j − h]− 30p[i, j] + 16p[i, j + h]− p[i, j + 2h]) =

1

12h
(v2[i− 2h, j]− 8v2[i− h, j] + 8v2[i + h, j]− v2[i + 2h, j]−

v1[i, j − 2h]− 8v1[i, j − h] + 8v1[i, j + h]− v1[i, j + 2h]) (4.34)

As one can see this gives a linear system of equations for p. For a displacement field with
512× 512 vectors, what tends to be a small dimension for images, one has to solve a LSE
with 262144 equations. A good way to solve such systems is to use the two-dimensional
discrete Fourier transformation.

p[i, j] =
1

N ·M

M−1∑
µ=0

N−1∑
ν=0

p̂[µ, ν] exp

(
2πi

(
iµ

M
+

jν

N

))
(4.35)

That is grounded in the shift theorem which states that a shift in the coordinates changes
to a multiplication in the Fourier base. We can prove it for the two-dimensional Fourier
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representation: Given a shift k to one of the coordinates, then

p[i + k, j] =
1

N ·M

M−1∑
µ=0

N−1∑
ν=0

p̂[µ, ν] exp

(
2πi

(
(i + k)µ

M
+

jν

N

))

=
1

N ·M

M−1∑
µ=0

N−1∑
ν=0

p̂[µ, ν] exp

(
2πi

(
kµ

M
+

iµ

M
+

jν

N

))

=
1

N ·M

M−1∑
µ=0

N−1∑
ν=0

p̂[µ, ν] · ωk
m exp

(
2πi

(
iµ

M
+

jν

N

))

with

ωm = exp
(
2πi

µ

M

)
.

(4.36)

Using this theorem it is possible to rewrite equation 4.34. By changing into the Fourier
base the shifts in the coordinates are replaced by multiplications with the appropriate
phases. Notice that only the left side is transformed into the Fourier basis. The right side
is calculated as it is, for the reason that a Fourier transform requires an assumption of the
boundary conditions. This is circumvented by using a special formula for the derivatives
at boundary points which was introduced on page 18.

The Fourier transformed, pre-calculated right side is denoted by ϕ̂[i, j] and the rewrit-
ten formula 4.34 is given by

1

12h2

(
−ω−2h

m p̂[µ, ν] + 16ω−h
m p̂[µ, ν]− 30p̂[µ, ν] + 16ωh

mp̂[µ, ν]− ω2h
m p̂[µ, ν]−

ω−2h
n p̂[µ, ν] + 16ω−h

n p̂[µ, ν]− 30p̂[µ, ν] + 16ωh
np̂[µ, ν]− ω2h

n p̂[µ, ν]
)

= ϕ̂[µ, ν] (4.37)

This equation can now easily be resolved to p̂[i, j] and the term in braces can be simplified
by using trigonometric rules.

p̂[µ, ν] = − 6h2ϕ̂[µ, ν]

30− 16 cos(λ) + cos(2λ)− 16 cos(κ) + cos(2κ)

with

λ = 2πh
µ

M
and κ = 2πh

ν

N
(4.38)
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Equation 4.38 has to be calculated for every vector of a field to get the Fourier transformed
potential p̂. Since the whole procedure from an input field v to its rotational part ∇ × p
consists of several steps, we will give a summarized order of events.

1. Calculate ϕ[i, j] for i = 1, . . . ,M and j = 1, . . . , N which is the right side of
equation 4.31. For the approximation of the derivatives, finite differences are used
(eq. 4.32). When boundary points are processed where not enough surrounding
points exists, another formula is used which takes more inner points (see p. 18).

2. Transform ϕ[i, j] with the DFT.

3. For every point (i, j) with i = 1, . . . ,M and j = 1, . . . , N calculate equation 4.38.
Remember that h is the distance between the grid points. It is assumed we have a
regular grid and the distance between the grid points is equal in every direction.

4. Calculate the inverse Fourier transform of p̂[i, j] for every i = 1, . . . ,M and j =

1, . . . , N . This results in the potential field p which represents the strength and the
direction of all vortices in the input field v. The vector potential pwhich is required
for the next step is simply given by p = (0, 0, p)>.

5. The vortex field of v can now be calculated by ∇× p.

4.4 ALGORITHM AND IMPLEMENTATION

Since the last section gives a description which is already very close to an algorithm, the
concern of this part is to give a better insight into the implementation. For that reason
we will provide a ready for use pseudo code representation which can be implemented
instantly.

Our implementation had to meet some special requirements. Therefore we firstly
present a short list which explains design notes and the language used:

• The basic Helmholtz decomposition should be a stand-alone, extensible and reusable
library written in C++.

• Since it is far easier to visualize and work with vector fields in MATHEMATICA

a package and a MATHLINK program was required connecting the Helmholtz de-
composition library with MATHEMATICA . How type conversion, function calls
and data transfer work in those MATHLINK programs can be found for instance in
[Wol03, Kus97].
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• The third requirement had significant influences on the design of the classes for the
C++ library. The projection algorithm should be included into the existing image
registration but it was not possible to write a separate module. The reason for this
is that the already existing library is an all-in-one CWEB implementation.

The final decision was to rebuild the C struct types and functions for vectors, arrays
and vector arrays with C++ classes in a way that function calls are very close to the
notation in the CWEB file. Then it is on the one hand possible to copy the vortex
projection into CWEB code and on the other hand to write and test an independent
module.

4.4.1 THE PROJECTION ALGORITHM

The basic projection algorithm 1 is straight forward. For the calculation of the curls at
the beginning and in the end the finite difference approximation showed in algorithm 2
was used. The Fourier transformations, forward and backward, were provided by the
FFTW library. This procedure is not explained here and we refer to the manual and
literature [FJ98].

Algorithm 1 The Helmholtz decomposition for a discrete vector field v with values v[i, j]
in the range of i = 1, . . . ,M and j = 1, . . . , N .

for all i, j with i = 1, . . . ,M and j = 1, . . . , N do
2: ϕ[i, j] ⇐ ∂v2[i,j]

∂x1
− ∂v1[i,j]

∂x2
{see algorithm 2}

end for
4: ϕ̂ ⇐ DFT (ϕ)

p̂ ⇐ Process algorithm 3
6: p ⇐ InverseDFT (p̂)

for all i, j with i = 1, . . . ,M and j = 1, . . . , N do
8: px ⇐ ∂

∂x2
p[i, j]

py ⇐ − ∂
∂x1

p[i, j]
10: p[i, j] ⇐ (px, py)

end for

The first calculation in the algorithm 1 is the right side of equation 4.31. For this pur-
pose and for the derivatives at the end we used the concept of algorithm 2. As said in the
previous section the derivatives boundary points are calculated with different formulas.
Therefore we use a case discrimination that decides whether we are directly on, one point
away or more than one point away from the boundary.

The next step in algorithm 1 is that the resulting potential field is processed with the
help of the FFTW library which is a free and very fast implementation [FJ98] of the
discrete Fourier transform. With this transformed potential field everything is prepared to
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Algorithm 2 Calculation of the first order derivative w.r.t. x2 of the first component of a
vector field v at the position (i, j).

Given a discrete vector field v and v[i, j] the value at the position (i, j) with i =
1, . . . ,M and j = 1, . . . , N . Assume h is the distance between two gridpoints in the
direction of j.
if j = 1 then

d ⇐ −3
2
v1[i, 1] + 2v1[i, 2]− 1

2
v1[i, 3]

end if
if j = 2 then

d ⇐ −1
3
v1[i, 1]− 1

2
v1[i, 2] + v1[i, 3]− 1

6
v1[i, 4]

end if
if j = (N − 1) then

d ⇐ 1
3
v1[i, j + 1] + 1

2
v1[i, j]− v1[i, j − 1] + 1

6
v1[i, j − 2]

end if
if j = N then

d ⇐ 3
2
v1[i, j]− 2v1[i, j − 1] + 1

2
v1[i, j − 2]

end if
if j > 2 ∧ j < N − 1 then

d ⇐ 1
12

v1[i, j − 2]− 2
3
v1[i, j − 1] + 2

3
v1[i, j + 1]− 1

12
v1[i, j + 2]

end if
return d/h

calculate equation 4.38 for every point in the field. This iteration over all points is shown
in algorithm 3.

After all points are calculated, the resulting field p̂ is processed through the inverse
Fourier transform. The last step is the calculation of∇×p which can again be performed
with the help of algorithm 2.

4.4.2 AN INTERFACE TO MATHEMATICA

To test the Helmholtz decomposition and to see how it works in different circumstances an
interface to MATHEMATICA was implemented. Basically this interface is for converting
the MATHEMATICA types down to C types and for providing a better user interface. To
call the C++ library function from MATHEMATICA three stages have to be developed.
The last stage which is the Helmholtz decomposition in this case was already explained.

When using MATHEMATICA most of the additional features come from so called
packages which are basically a set of normal function definitions. Such a package is
the interface for the user who accesses your low-level library methods. In combination
with the Helmholtz decomposition library such a package was developed too. It provides
not only access to the library functions but some more tools for working with vector fields.
This package is called FieldTools .
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Algorithm 3 The basic iteration to calculate the Fourier transformed vortex potential of
the input field.

for l = 0, . . . , N − 1 do
λ ⇐ 2πhl

N

c2l ⇐ cos(λ)
c4l ⇐ cos(2λ)
for k = 0, . . . ,M − 1 do

κ ⇐ 2πhk
M

c2k ⇐ cos(κ)
c4k ⇐ cos(2κ)

p̂[i, j] ⇐ 6h2ϕ̂[i,j]
30−16c2l+c4l−16c2k+c4k

end for
end for

Listing 4.1: A part of the FieldTools package showing the definition of a

function.

0 Options[ExtractRotationalField]={
TransformType->FullFourier

}

ExtractRotationalField::parm="Wrong type or form of parameter.";
5 ExtractRotationalField[m_,dx_:NumericQ,dy_:NumericQ,opts___]:=

Module[{dim,xData,yData,ret,tt,ttype},
dim = Dimensions[m];
(* Extract the option settings *)
{tt}={TransformType}/.{opts}/.Options[ExtractRotationalField];

10 (* Check if the array has the right
dimensions and is bigger than 5x5 *)
If[ArrayQ[m,3,NumericQ] && dim[[3]]==2 && dim[[1]]>5 && dim[[2]]>5,

(*then*)
{xData,yData}=Transpose[Flatten[m,1]];

15 ttype=Switch[tt,WithSin,0,WithCos,1,_,2];
(* Call the MathLink function *)
ret=Global‘rawExtractRotationalField[ N[xData],

N[yData],
dim[[1]],

20 dim[[2]],
N[dx],
N[dy],
ttype];

If[ret=!=$Failed,
25 (*then*)

(*Transpose the result to have a list in the form of
{{{x11,y11},{x12,y12},...},{{x21,y21},...}} *)
Return[Transpose[ret, {3, 1, 2}]];,
(*else*)

30 Return[$Failed];],
(*else*)
Message[ExtractRotationalField::parm];
Return[$Failed];
]

35 ]

To see how a function call in MATHEMATICA down to the C++ library works we will
follow the way of one provided FieldTools function. As an example, listing 4.1 gives the
definition of the ExtractRotationalField function.
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The definition consists broadly of three parts. The first one is to process options
and check the validity of the parameters. In the second part at line 17 a call to the raw
function is done. This call leads to the next deeper level which is the MATHLINK layer.
The third and last part handles return values and errors and gives the results back to the
MATHEMATICA front-end where it was called.

The raw function of the extraction in line 17 is of interest because it sends the data to a
linked C program. MATHEMATICA provides header files and a preprocessor for creation
of those programs. One has to write a combination file consisting of MATHEMATICA and
C code. This template file is processed with the mprep tool which is this preprocessor. The
output is an extended C file so that the compiled program can be called by MATHEMATICA

.

Listing 4.2: A part of the MATHLINK template file.

0 :Begin:
:Function: extractRotationalField
:Pattern: rawExtractRotationalField[dataX_List,dataY_List,

nx_Integer,ny_Integer,dx_Real,
dy_Real,transformType_Integer]

5 :Arguments: {dataX,dataY,nx,ny,dx,dy,transformType}
:ArgumentTypes: {RealList,RealList,Integer,Integer,Real,Real,Integer}
:ReturnType: Manual
:End:

10 void extractRotationalField(
double *dataX,
long lx,
double *dataY,
long ly, int nx, int ny, double dx, double dy, int t){

15

if(lx!=ly || nx!=ny || nx<5){
MLPutSymbol(stdlink,"$failed");
return;

}
20

VectorArray2D *in = new VectorArray2D();
int addr;
in->Init(nx,ny,1.0,1.0);
for(int i=0; i<nx; ++i){

25 for(int j=0; j<ny; ++j){
addr=j*nx+i;
in->set(i,j,dataX[addr],dataY[addr]);

}
}

30

VectorArray2D *out = new VectorArray2D();
switch(t){

case 0:
HelmholtzHodge2D::ExtractRotationalFieldWithSinTransform(

35 in,
in->nx,
in->ny,
in->dx,
in->dy,

40 out);
break;

case 1:
// The rest is omitted
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As one can see in listing 4.2 the file consists of parts that are dedicated to MATHE-
MATICA and parts that are pure C or C++. The first 8 lines are for the pattern match-
ing of the function call. Exacting, when the MATHEMATICA package calls a function
matching the :Pattern: section then this call is forwarded to the C function matching
:Function:.

Inside the extractRotationalField function the last layer is reached by call-
ing the Helmholtz decomposition library. Now the three steps, namely the MATHEMAT-
ICA package, the MATHLINK program and the decomposition library, are complete. The
decomposition algorithm returns its result to the higher level until it reaches the user in
the MATHEMATICA front-end.

With this interface to MATHEMATICA it is now possible to validate whether the Helm-
holtz decomposition works correctly. In the next section we will apply some test vector
fields to the algorithm. We will show how exactly the method is working and what prop-
erties this decomposition has.

4.4.3 TEST SITUATIONS FOR THE PROJECTION

Figure 4.7: Three different vector fields. The left is a rotational or
divergence-free field. The middle one is a solenoidal field and the right
field has only homogeneous parts.

To show how the vortex projection algorithm works three fields were created, given in
figure 4.7. Every single field has special properties which the other two do not have. Par-
ticularly the left field is the only one with a vortex, because the middle one is a divergence-
only field and the left one is homogeneous.

The plan is to add them together and let the algorithm find the rotational part. Since
we know how the real rotational part must look like we can verify whether the method
works correctly or not.

By adding them together one can see in figure 4.8 that it is not really possible to
recognize the parts of the field. Notice that these plots of the fields show all vectors of the
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discrete data. This means the algorithm does not have more information about the field
than the viewer has.

Figure 4.8: The sum of the three single fields of figure 4.7.

In figure 4.9 the result of the decomposition algorithm is shown together with the
original rotational part. The method extracted the vortex in the middle very well.

Figure 4.9: The result of the decomposition algorithm together with the
original rotational part (right).

To give an exact measure for the quality of the extraction the difference of the original
field, denoted by vo[i, j], and the extracted one, denoted by ve[i, j] is calculated. The
summed norm of the difference field is then given by

M∑
i=1

N∑
j=1

‖vo[i, j]− ve[i, j]‖. (4.39)

For better comparisons table 4.1 gives not only the summed norm of the error but also the
values for the single fields and the sum of them. Since it is far more interesting where the
errors were made, a plot of the difference field is very useful. To create it the norms of
the difference vectors are not added together but ploted as a hight field.

In this plot (figure 4.10) one can see that the error is very high in middle region. This
is not unexpected because the center is not very smooth. At the boundary mistakes arose
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Vector field Norm
Original added fields 561.068

Original homogeneous part 458.205
Original divergence part 226.138
Original rotational part 118.797

Extracted rotational part 118.455
Difference to the original 0.342

Table 4.1: The norm of the fields.

too. As we will see very soon this is caused by the boundary itself. The problem is that the
theorem of Helmholtz is given for smooth and fast decaying vector fields. With discrete
data it is not always possible to have a smooth enough field. Furthermore at the boundary
the field ends immediately. What if the vortices in the field do not decay fast enough and
we have a vortex on the boundary?

Figure 4.10: The error of the vortex projection.

We will see that vortices near the boundary are going to be a problem for the method.
The second sample will show this. A vortex was placed directly onto the boundary so that
only one half of it is visible. In such a situation the choice of the boundary conditions will
become very important for the success of the method. By choosing different transforma-
tions for the decomposition it is possible to force the extracted rotational field to fulfill
different boundary conditions.

1. If the Fourier transform is used, the extracted field will have a periodic boundary.

2. If the sine transform is used, the extracted field is zero in the direction vertical to
the boundary.

3. If the cosine transform is used, the extracted field is zero in the direction of the
boundary.

Figure 4.11 shows the results of different boundary conditions. With a periodic boundary
a part of the vortex in the top is reflected into the bottom of the field. The cosine transform
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Figure 4.11: Sample for a big vortex very near to the boundary. In the
second row the results of the decomposition with different boundary con-
ditions are shown. The left picture shows Fourier transform with periodic
boundary, the middle one shows cosine transform with normal bound-
ary and the right one shows sine transform with zero displacement to the
boundary.

with its normal displacement to the boundary extracts the vortices worst. That is caused
by the fact that a vortex near the boundary does not have many vertical components.
Hence for most vortex containing fields the sine transform method yields the best results.

Vector field Norm Percentage
Original field 1449.32 100%

Difference with Fourier transform 570.571 39%
Difference with cosine transform 962.193 66%

Difference with sine transform 276.154 19%

Table 4.2: A comparison of the made errors of different methods.

4.5 INTEGRATION INTO THE REGISTRATION PROCESS

In the last sections we have shown how the two parts, namely the curvature registration
and the vortex extraction, work seperately. Now we want to describe how to combine
these two things.
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The curvature registration solution method iterates over the time and the discretization
level. Since we start with a zero displacement, the only place where vortices can arise is
the F (`) term which is Fourier transformed and used in the following equation. This
equation was already described on page 40.

V̂
(`)

µ,ν(t + h) = −Û
(`)

µ,ν(t) +
6
(
2 Û

(`)

µ,ν(t) + h F̂
(`)

µ,ν

)
q(µ, ν; ω

(`)
µ , ω

(`)
ν )

(4.40)

Therefore, the place where we will put in the vortex extraction directly after the force
for a single iteration step was calculated. Algorithm 4 gives a summarized view of the
sequence of steps which were explained explicitly through this chapter.

Algorithm 4 Given two images, namely the reference R and the deformable template T ,
a number of discretization levels L, a time step h > 0 and an initial displacement field at
zero level with U (0) = 0. Furthermore the images were sampled for every discretization
level so we have R(`) and T (`) for every level ` = 0, . . . , L. The following algorithm
describes the complete curvature-based registration procedure and shows where the vortex
extraction takes place.

t ⇐ 0
repeat

for ` = 0, . . . , L do
for all m = 1, . . . ,M (`) and n = 1, . . . , N (`) do
F (`) ⇐

(
R(`)(xm,n)− T (`)(xm,n −U (`)

m,n)
)
· Grad(T (`)(xm,n −U (`)

m,n))

end for
F (`) ⇐ VortexExtraction(F (`))

Û
(`)
⇐ DFT(U (`))

F̂
(`)
⇐ DFT(F (`))

for all µ = 1, . . . ,M (`) and ν = 1, . . . , N (`) do

V̂
(`)

µ,ν ⇐ −Û
(`)

µ,ν +
6

“
2 Û

(`)
µ,ν+h F̂

(`)
µ,ν

”
q(µ,ν;ω

(`)
µ ,ω

(`)
ν )

end for
end for
V (`) ⇐ InverseDFT(V̂

(`)
)

error ⇐
∥∥V (L) −U (L)

∥∥
U (L) ⇐ V (L)

for ` = L− 1, . . . , 0 do
U (`) ⇐ R

[
U (`+1)

]
end for
t ⇐ t + h

until error > ε
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4.6 REMARKS

With the last chapter we showed that the introduced curvature-based method has some
basic drawbacks when ill-suited image data is used. The question is now whether we can
improve the method significantly by applying our projection algorithm.

As we saw the projection method performs unreasonably in some cases. Therefore
chapter 5 will discuss whether or not the error in the Helmholtz decomposition deterio-
rates the method completely.
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In this part we will compare two existing image registration methods with our new
vortex extraction procedure. The most interesting part is, how much it improves the un-
derlying curvature based method. The second comparison is to confront our method with
the vortex suppression registration of Kuska and Braumann [BK06].

We will show three different examples where the first and the second one is an artifi-
cially created problem and the third is a realistic application. We have chosen the images
of a leopard and a tiger for the artificial samples. The realistic application example is
given in two slices that were consecutively cut from a specimen of a squamous cell carci-
noma of the uterine cervix.

The images of the animals were deformed using the frog-eye transformation transfor-
mation already introduced. The advantage of this transformation is that it is a non-linear
deformation which is bijective. Additionally its inverse is known. Therefore we can easily
provide the correct displacement vector for each point.

5.1 LEOPARD WITH FROG-EYE DEFORMATION

5.1.1 INPUT IMAGES

Figure 5.1: Leopard input images. The left serves as reference and the
right as deformable template.

For the first example we use the front view of a leopard. The position of the animal in
the image was chosen in this way because the frog-eye takes effect in a radius around
the middle of the picture. With this choice we have the head containing the most fine
structures in exactly this region. Therefore it is very likely that if errors occur they are
caused by the dark spots of the head.
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5.1.2 REGISTRATION RESULTS

Figure 5.2: The upper row shows the results of the registration methods.
Below every leopard one can see the LIC of the belonging displacement
field. From left to right following methods are shown: Curvature-based,
curvature-based with vortex suppression and curvature-based with vortex
extraction.

The results of the registrations are shown in the upper row of figure 5.2. One can observe
that without any vortex handling the leopard cannot be registered well. It still contains an
intense deformation of the head.

This behavior is easier to observe in the LIC because the displacement field of the in-
verse frog-eye is very regular. The difference between the first and the other two examples
is apparent.

The vortex suppression and the vortex extraction method seem to work similarly. Es-
pecially it is not possible to find any registration errors when one looks at the images of
the leopards only. Even the LIC of the two vortex handling methods look quite similar.
Differences are notable at the borders but it is not possible to say whether errors occur or
not.

Very interesting is why the irregularity in the first method does not look like a real
vortex. Our new method extracts only vortices and is not able to correct any other prop-
erties.
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The answer is that this wrong displacement field is the result of many small calculation
steps. During the whole process the method flowed into a wrong result because each step
was allowed to use vortices to find the next step. Maybe this leads to better intermediate
solutions but the result is not the global minimum of the registration problem.

Figure 5.3: First row: LIC on a bump map representing the strength of
the displacement. Second row: Error plots of the obtained displacement
vector fields.

In the illustrations in figure 5.3 two different properties are shown. The first row
contains the displacement fields plotted onto a bump map of the displacement vector
lengths. The second row shows the absolute error of the displacement field. Notice that
all plots share the same scale. Therefore we can verify the extent of the error made by the
first method and we see that the two vortex handling registrations are quite similar.

In the most right error plot (which is again the vortex extraction method) one can see
that the amount of the error on the circle defining the boundary of the frog-eye is higher
than in the middle registration (which is the vortex suppression method).

Finally, we can say that our new vortex extraction method is a big improvement to the
basing image registration. The continuous projection of the vortices leads the registration
process over the local minima in the intermediate steps. Therefore a much better solution
is found.

Compared to the vortex suppression method we make a few more errors near the
borders of the image. Whether this is significant for realistic applications or only a side
effect of the frog-eye deformation cannot be said at this point. It will be discussed later.
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5.2 TIGER WITH FROG-EYE DEFORMATION

5.2.1 INPUT IMAGES

Figure 5.4: Tiger input images. The left serves as reference and the right
as deformable template.

The second example is similar to the first one. Equivalent to the leopard, the tiger has a
highly structured coat too. It is obvious that for the computer these two data sets have
absolutely nothing in common. Only for humans these are quite similar pictures showing
two related animals. Therefore it would make no difference whether we take any other
enough textured images.
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5.2.2 REGISTRATION RESULTS

Figure 5.5: The upper row shows the results of the registration methods.
Below every tiger one can see the LIC of the belonging displacement
field. From left to right following methods are shown: Curvature-based,
curvature-based with vortex suppression and curvature-based with vortex
extraction.

In this example there are two significant regions where the curvature-based method runs
into errors and even there the vortex suppression and the vortex extraction registration
improves the solution.

Again it seems to be the texture of the tiger that lets the method run into errors. The
curvature-based registration is not able to handle the stripes of the coat.

In the upper row of figure 5.5 one can make sure that the difference between the
two vortex handle methods cannot be determined by the images. Both tigers seem to be
registered perfectly. Even the LICs show no significant difference. Only in the border
regions they differ in their structure.

The error plots in figure 5.6 disclose two things. Firstly one can see that the buckles in
the tiger of the curvature-based method are the points with the greatest registration error.
Secondly they show that contrary to the first impression that the two vortex handling
methods do not work perfectly.

The registrations with vortex suppression has notable errors in the middle and directly
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onto the borders of the image. Whereas our vortex extraction method has, beside the same
error in the middle, significant problems with the boundary of the frog-eye.

Figure 5.6: First row: LIC on a bump map representing the strength of
the displacement. Second row: Error plots of the obtained displacement
vector fields.

Finally, the worst registration is again the curvature-based without any processing of
vortices. The other two methods work reasonably well. Apparently the vortex suppres-
sion has an error maximum at the border whereas the errors of the vortex extraction are
distributed on the boundary of the frog-eye.

5.3 DISCUSSION

Before we present a realistic example we want to discuss how the results can be inter-
preted. Firstly we have shown that the behavior of the underlying method to produce vor-
tices and to run into wrong solutions can be easily reproduced. Furthermore we pointed
out that it is not important what is actually shown on the images. As long as the data is
highly stuctured and we have an appropriate deformation of the template, the method will
run into more or less heavy errors.

Our new method improves this behavior significantly. During the process of finding
the solution the algorithm moves along one of many possible paths. In each step it goes
into a direction that improves the actual result. Important is that the algorithm does not
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see the end. It can only decide its next move by looking exactly one time step forward in
each direction.

If you have to find a valley in the mountains you would probably do the same. Going
downwards with every footstep until you reach a point where it is not possible anymore
to walk deeper. The question is, how can you be sure you found the deepest valley and
not only a little one between some mountains. This is problematic because you cannot be
sure.

The old algorithm has an equivalent problem. It runs into a local minima without the
knowledge that there is a much better transformation for the registration problem.

Our new approach uses an advantage we have: We know that vortices are very un-
likely. Projecting them out of the intermediate steps ensures that the part of the movement
that goes into the wrong direction is sorted out. Therefore the algorithm cannot deviate
from the right path and walks into the global solution.

The results show that our method has the highest amount of errors at the boundary of
the frog-eye. There are two possible reasons for this. Firstly one should notice that the
boundary1 of the frog-eye is not continuous. For a comparison the reader can look back on
page 41 at the visualizations of the frog-eye transformation. With a smooth displacement
field it is not possible to represent this boundary correctly.

The second reason is that those regions are very near to the border of the image. We
already pointed out that the vortex projection at the boundary is problematic. It is possible
that errors in the projection on a certain level have notable influences on the result of the
image registration.

We have shown that the registration extended by a vortex extraction improves the old
algorithm significantly. We gave an explanation why our new approach is working and
where its drawbacks are. Since many readers may be distrustful whether we can simply
apply the conclusions on a real application, we will give a third example which is more
realistic than the first two.

1This is where the bump changes into the untransformed grid.
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5.4 REGISTRATION OF UTERINE CERVIX SLICES

5.4.1 INPUT IMAGES

Figure 5.7: These images are two HE-stained histological slices consec-
utively cut from a specimen of a squamous cell carcinoma of the uterine
cervix which are to be registered onto another.

For the last example we chose a realistic registration problem given in two HE-stained
histological slices which were consecutively cut from a specimen of uterine cervix. As
described in the introduction our method was designed to improve the last registration
step in the process of a 3D reconstruction of a tumor invasion front. Therefore the two
given slices were already processed through a rigid and a polynomial registration.

At this point it is impossible for a viewer to find differences in the reference and the
template image which are shown in figure 5.7. Nevertheless, the two images are not equal
but the only differences are small and difficult to recognise.

At least now it should become clear why we did not use those kind of sample data
up to now. What we used in the previous examples is the human ability to observe faces.
Everyone is extremely trained in recognizing even the smallest deformations of those
well known objects. Interpreting faces is a great accomplishment of the human eye-brain
system.

In contrast to that only few people are trained to look on medical tissue images. Much
experience is required to recognize differences and registration errors. This is the reason
for using animals for demonstration purposes.

Nevertheless we want to provide this example. Since the difference between the ref-
erence and the registered template is unrecognizable we cannot use them to evaluate the
quality of the registration. Instead of these images we will use the LICs to determine the
work of the methods.
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5.4.2 REGISTRATION RESULTS

In figure 5.8 the LICs of the uterine cervix registrations are given. Subfigure (a) be-
longs to the original curvature-based non-linear registration. Since this method was used
in [BKE+05a] the same line integral convolution is given there. This first displacement
field consists of many particular features. Since we do not know the real solution of the
registration we are not able to state which of these features are errors and which not.

This is a problem and we have to discuss what results are expected by applying our
new method. The previous test situations showed that highly textured regions of the image
are now handled very well. Local significant errors of the old method vanish completely.

Therefore we expect the method to reduce the number of features in the result. As we
can see in the LIC (a) of figure 5.8 those features are uniformly distributed to a certain de-
gree over the displacement field. We say ”features” because we cannot exactly determine
whether they are sources, sinks, vortices or a combination of them.

What we know is that the input data was highly textured and it is very likely this
causes an amount of wrong displacements. If our method smooths the displacement field
to some extent, we can assume that those regions contained wrong displacements.

Observing the pictures (b) of figure 5.8, which represents the result of the vortex
suppression method, one can see that the displacement field appears to be much smoother.
Especially at the bottom a big difference is notable. We can assume that the input pictures
did not differ that much in the lower part. The promiscuous displacements seem to be
caused by registration itself.

The result of our method is given in the subfigure (c). Surprisingly our method seems
to smooth the displacement field more than the vortex suppression registration.

Finally we can only say that our method works as expected. Since the tissue is of
course highly textured and since we know that our algorithm works equivalent on all
input data it is very likely that our method extracted unwanted vortices from the solution.
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(a) The LIC that belongs to the displacement field of the registration
method without vortex handling.

(b) The LIC that belongs to the displacement field of the registration
method with vortex suppression.

(c) The LIC that belongs to the displacement field of our new registration
method with vortex extraction.

Figure 5.8: LICs of the uterine cervix example.
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CONCLUSION

IMPORTANT NOTICE TO PURCHASERS:
The Entire Physical Universe, Including This Prod-

uct, May One Day Collapse Back into an Infinitesi-

mally Small Space. Should Another Universe Subse-

quently Reemerge, the Existence of This Product in

That Universe Cannot Be Guaranteed. [HS91]
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The target of our work was to show whether we can influence successfully an image
registration during the solution procedure. It is a great advance that we are able to lead
the method to solutions that we decide to be more likely than others.

In the case of this thesis we developed a projection technique that allows us to suppress
unwanted vortices. Although this projection has some known problems on discrete data,
the integrated process of curvature-based registration and vortex projection works better
than expected.

The problematic, high-textured regions which were a pitfall for the curvature-based
registration are now handled excellently. Even in comparison with the existing vortex
suppression method our new registration yields nearly the same results in the analytic
examples.

Since there is significantly more smoothness compared to the vortex suppression
method in the real-world example, we are confident that this work will be of great use
in the registration of tissue images.

Beside this, the reader should notice that the results of this work prepare the ground
for broadly based future plans. The image registration in this special case required solu-
tions which are vortex-free. It is very likely that there are other applications which have
different assumptions on the resulting displacement field.

For instance a divergence-free approach would be of great interest. This would rep-
resent a situation where the registration saves the mass of the template because without
sources and sinks a change of this property is not possible.



APPENDIX A

LIST OF ABBREVIATIONS.

Some of the abbreviations are described in more detail in the text and some are only
used and details are given here. The page number after the description refers to the first
occurence of the acronym.

CCD Charge coupled device, page 4

FFTW Fastest Fourier Transform in the West, page 50

LIC Line integral convolution, page 9

LSE Linear system of equations, page 47

MRI Magnetic resonance imaging. Also known as magnetic resonance tomography
(MRT) or nuclear magnetic resonance (NMR), page 4

PAT Principal axes transformation, page 25

PDE Partial differential equation, page 32

pixel Picture element, page 5

w.r.t. With respect to, page 16

x-ray X-rays are a form of radiation discovered by Wilhelm Röntgen. They are often
called Röntgen radiation and in medicine they are used for imaging bone struc-
tures, page 4
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SUMMERY OF USED SYMBOLS AND

THEIR MEANING

B.1 OPERATORS, NORMS AND ATTRIBUTES

‖·‖: The norm of a vector. The dimension of the space depends on the context.

∇: The nabla operator is a symbolic vector and often used in vector analysis. It is defined
by

∇ :=


∂

∂x1

∂
∂x2

∂
∂x3


grad f(x): The gradient of a scalar function f : R3 → R is a vector field that represents

the partial derivatives of f(x) in every direction. It can be expressed with the Nabla
operator (∇).

grad f(x) = (∇f)(x) =


∂

∂x1
f(x)

∂
∂x2

f(x)
∂

∂x3
f(x)


div f(x): The divergence of a vector-valued function f : R3 → R3 is a scalar field that

represents the flow.

div f(x) = ∇ · f(x) =
∂

∂x1

f1(x) +
∂

∂x2

f2(x) +
∂

∂x3

f3(x)

curl f(x): The curl of a vector-valued function f : R3 → R3 is a vector field that
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represents the rotation of f(x) in every direction.

curl f(x) = ∇× f(x) =


∂

∂x2
f3(x) − ∂

∂x3
f2(x)

∂
∂x3

f1(x) − ∂
∂x1

f3(x)
∂

∂x1
f2(x) − ∂

∂x2
f1(x)


∆: The Laplace operator. It is defined by

∆f = div grad f = ∇ · ∇f

X>: The transpose of a matrix which makes the columns to rows and vice versa.

A×B: The cross-product of the matrices A and B.

δF (u+ εg): Gâteaux derivative of u in the direction of g.

B.2 GENERAL NOTATIONS

N, R, C: Symbols for natural, real and complex numbers.

p,v(x, y),x: Symbols printed in bold italic font indicate that it is a vector or a vector-
valued function. Sometimes it depends on the context whether a single symbol like
p refers to a vector or a vector-valued function.

A,B,1: In formulas and mathematical expressions an upper-case symbol typed in bold
font denotes a matrix. The symbol 1 denotes the unity matrix which has a 1 on
every position on the main diagonal and 0 otherwise. Its dimension depends on the
context.

T, T(R(x)): When the context does not guess another meaning, then it is commonly used
for transformations in registration methods. T(R) denotes a transformation T of an
image R.

D,S: D(u) (difference) and S(u) (smoothness) are functionals which are required for
defining non-parametric image registration problems.

u: In almost every case denotes u or u(x) a displacement field for a given registration
problem.

Ω: General notation for the compact area Ω =]0, 1[d where a d-dimensional image is
defined.
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