Recursive Gaussian Filter for Mathematica
using CUDA

Patrick Scheibe

December 2008

Contents

1 Introduction

2 MathLink-template code
3 The Host-Code

4 The Device Code

5 Appendix

1 Introduction

This implementation bases on [YvV95]. It demonstrates how to combine Mathematica and CuDA
and it is written in CWEB. Three parts are important

e [need a MathLink-template to call the C-function from Mathematica. This connects param-
eters and function names of the corresponding parts in C and in Mathematica.

e A C-function is required which allocates stores for arrays, does some simple precomputations
of the gaussian parameters and calls then the CUDA-kernel. After the computation is finished
the results are send to Mathematica. 1 will call this the host-code since all this does not run
on the gpu.

e The most important part is the CuDA-kernel which define what is done on the gpu in parallel.
This part is called the device-code.

1 #define NUM_OF_THREADS 32

(Headers 2)

(CUDA Kernel for the Gaussian Filter 8)

(Mathematica MathLink Template for the Gaussian Filter 4)
(Gaussian Filter 5)

(Main Loop 3)

Y The includes.

2 (Headers 2) =
#include <mathlink.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <cutil.h>
#include <math.h>

This code is used in chunk 1.

9 The main-loop for the MathLink-program. Note that this is only for the linux OS (maybe OSX
t00).
3 (Main Loop 3) =
int main(int argc, char xargv|])

{

CUT_DEVICE_INIT(argc, argv);
return MLMain(arge, argv);

}

This code is used in chunk 1.

4

2 MathLink-template code

The Mathematica Template connects the C-function, cudaGaussianFilter(...), and the Mathe-
matica function, CudaGaussianFilter|...], which is a lowlevel function since it gets not an image
but a list of the pixel-values and the dimensions. Later I will wrap this lowlevel function with a
highlevel version which is called with an image. In the line starting with Pattern you can see that I
get the graylevel-bitmap bm as one-dimensional list from Mathematica. Since I only test whether
bm is a list and not whether it is one-dimensional, I flatten it in the Arguments line. Furthermore,
I ensure that the sigma is evaluated to a numerical value.
(Mathematica MathLink Template for the Gaussian Filter 4) =

:Begin:

:Function:cudaGaussianFilter

:Pattern:CudaGaussianFilter [bm_List,nx_Integer,ny_Integer,sigma_7NumericQ]

:Arguments:{Flatten[bm] ,nx,ny,N[sigmal}

:ArgumentTypes:{Reallist,Integer,Integer,Real}

:ReturnType:Manual

:End:

This code is used in chunk 1.

3

The Host-Code

Before calling the CuDA-kernel I have to allocate and initialise the arrays. In this step I transfer
the image into the memory of the graphics-card. After that the whole filter consists of only 4
sequential steps where every step runs in parallel on the gpu:

1.

All rows are processed separate with the method described in [YvV95]. This consists basically
of a forward run followed by a backward run through the row.

. Now all columns need to be processed. Therefore, the bitmap is transposed and

the first step is called again, working now on the columns (Transposing a matrix means first
row becomes first column, second row becomes second column and so on).

4. A final transpose rotates the bitmap to its original form.

I end with returning the result to Mathematica and freeing all allocated memory.

5 (Gaussian Filter 5) =
void cudaGaussianFilter (double xh_bm,long n,int nz,int ny,double sigma)

{

double xd_bm, xd_bm_transposed, xh_res; /* The array where the result is stored x*/
double ¢; /* An adapted version of the sigma */

size_t stride, stride_tr; /* The stride I have to use instead of ny */

int blocksize, /+ How many thread per block */

gridsize; /* How many blocks in all */

cudaError_terr;

blocksize = NUM_OF_THREADS;

gridsize = (ny % blocksize = 0) 7 ny/blocksize : ny/blocksize + 1; /* make enough blocks
if ny is not divisible by the choosen blocksize which is usually 32/

(Calculate the parameter for the gaussian filter 7)

CUDA_SAFE_CALL (cudaMallocPitch ((void xx) &d_bm, & stride, nz * sizeof (double), ny));

CUDA_SAFE_CALL (cudaMallocPitch((void %) &d_bm_transposed , & stride_tr,
ny * sizeof (double), nz));

CUDA_SAFE_CALL(cudaMemcpy2D ((void *) d_bm, stride, (void *) h_bm,
nz sizeof (double), nz * sizeof (double), ny, cudaMemcpyHostToDevice));

h_res = (double x) calloc(sizeof (double), nz * ny);

cudaGaussKernel << gridsize, blocksize >> (d_bm, stride, nz,ny, b0,b1,b2,b3,b4);

cudaTransposeKernel << gridsize, blocksize >>> (d_bm, stride, nz, ny, d_bm_transposed,
stride_tr);

cudaGaussKernel << gridsize, blocksize >>> (d_bm_transposed, stride_tr,ny, nx,b0,b1,b2,
b3,04);

cudaTransposeKernel << gridsize, blocksize >> (d_bm_transposed, stride_tr, ny, nz, d_bm,
stride);

err = cudaGetLastError();

if (cudaSuccess # err) {

forintf (stderr, "Cuda_error: %s.\n", cudaGetErrorString (err));
exit (EXIT_FAILURE);

}

CUDA_SAFE_CALL (cudaMemcpy2D ((void x) h_res, nz * sizeof (double), (void x)
d_bm, stride, nx * sizeof (double), ny, cudaMemcpyDevice ToHost));

MLPutRealList (stdlink, h-res, nx * ny);

cudaFree(d_bm);

cudaFree (d_bm_transposed);
free(h_res);

}

This code is used in chunk 1.

8

4 The Device Code

This part consists of two Kernels (functions running on the gpu), one for the transposition of a
matrix and one for the gaussian filter. Note that a kernel is (here) a chunk of code which processes
exactly one row (column) of the bitmap. CubDA will run many instances of the kernel in parallel.
You may ask how CUDA know which kernel should process which row. This is done through the
blockldz, threadldx and blockDim variables which ”enumerate” every gpu-processor uniquely (this
is very unprecise in terms of CUDAs Processor, Thread, Block and Grid vocabulary).

9 Istart with the calculation of the ¢ of (8c). Further details can be found in the section Choosing
¢ in section 4 of [YvV95].

(Calculate the parameter for the gaussian filter 7) =
if (sigma < 0.5) { /* The quotient q would be 0, so we can stop. */
ML PutSymbol (stdlink, "$Failed");
return;
}
else if (sigma > 0.5 A sigma < 2.5) {
q = 3.97156 — 4.14554 x sqrt (1.0 — 0.26891 * sigma);
}
else if (sigma > 2.5) {
g = —0.9633 4+ 0.98711 * sigma;
}
else q = sigma;
double b0 = 1.57825 + ¢ * (2.44413 + (1.4281 + 0.422205 * q) *);
double b1 = g * (2.44423 + ¢ * (2.85619 + 1.26661 * q));
double b2 = (—1.4281 — 1.26661 * q) * ¢ * g;
double b3 = 0.422205 x g * q * g;
double b4 =1.0 — (b1 + b2 4 b3)/b0;

This code is used in chunk 5.

9 The algorithm for one row is straight forward. Since the formula for a pixel needs the (already
calculated) last three pixel values, the boundary must be handled separately. I assumed missing
pixel to be of the same value like the boundary pixel and I process these three by hand.

(CUDA Kernel for the Gaussian Filter 8) =
__global__ void cudaGaussKernel(double xd_bm,size_t stride,int nz,int ny,double
b0,double b1,double b2,double b3, double B)
{

int pos = blockldz .z * blockDim.x + threadldx .x;
if (pos > ny V pos < 0) return;
double pV; /* The value which is used for padding */
/* Forward iteration. Calculating the boundary-elements by hand. =/
double xin = (double *)((char *) d_bm + pos * stride);
pV = xin;
in[0) = BxpV 4+ (b1 xpV +02*xpV + b3 xpV)/b0;
in[l] = Bxin[l] + (b1 xin[0] + b2 x pV 4+ b3 x pV)/b0;
in[2) = Bxin[2] + (b1 = in[l] + b2 * in[0] + b8 x pV) /b0;

9

for (int i =3; i < nx; ++i)
in[i]| = B*inli]+ (b1 xinfi — 1] + b2 *x in[i — 2] + b3 * in[i — 3])/b0;
/+ Backward iteration. Calculating the boundary-elements by hand. */
int r=nx —1;
pV =in|r];
in[r] = BxpV + (bl xpV + b2 %pV + b3 xpV)/b0;
in[r—1] = Bxin[r — 1] + (b1 *in[r] + b2 x pV + b3 x pV)/b0;
infr —2] = Bxin[r — 2] + (b1 *in[r — 1] + b2 * in[r] + b3 x pV)/b0;
for (int i =r—3; i > 0; —1)
in[i] = Bxnfi] + (b1 = inl[i + 1]+ b2 = in[i + 2] + b3 = in[i + 3])/b0;
}

See also chunk 9.

This code is used in chunk 1.

9 The last part is the transposition of the bitmap. Here I just allocated another array and every
row is copied into the appropriate column. If you don’t know why the strides are needed, check
the documentation of cudaMallocPitch.

(CUDA Kernel for the Gaussian Filter 8) +=
__global__ void cudaTransposeKernel(double xin,size_t stridel,int nz,int ny,double
xout,size_t stride2)
{

int row = blockldz .x * blockDim.x + threadldx .x;
if (row > ny) return,;
double #r = (double x)((char x) in + stridel * row);
for (int i =0; ¢ < nz; ++i) {
double *outRow = (double *)((char *) out + i x stride2);

outRow [row] = r[i];

}

5 Appendix

9 The compilation of the CWEB file into an executable constists of several steps. First you need
to tangle your .w file

ctangle -bh cudaRecursiveGaussianFilter.w - cudaRecursiveGaussianFilter.tm
This step produces a Mathematica-template file which needs to be processed by mprep
mprep -o cudaRecursiveGaussianFilter.cu cudaRecursiveGaussianFilter.tm

mprep can be found in the Mathematica-install path under (on my 64 bit Linux box)
SystemFiles/Links/MathLink/DeveloperKit/Linux-x86-64/CompilerAdditions. This step is
followed by the call of the CuDA-compiler. I added several options

e —arch compute_13 and -gpu-code sm_13 forces CUDA to take the version 1.3. In older
versions and on other graphic cards the double data type is not supported. Therefore, this
option seems essential

e ——optimize 3 is for optimized code.
e ——machine 64 to build a 64-bit program.
The CuDA-compiler is called by

nvce \

—arch compute_13 \

-—optimize 3 \

--machine 64 \

—--gpu-code sm_13 \

-o fastgauss.exe \
-I/usr/local/Wolfram/Mathematica/6.0/SystemFiles/\
Links/MathLink/DeveloperKit/Linux-x86-64/CompilerAdditions \
-L/usr/local/Wolfram/Mathematica/6.0/SystemFiles/Links/\
MathLink/DeveloperKit/Linux-x86-64/CompilerAdditions \
-1m \

-lpthread \

-1ML64i3 \

-I ~/NVIDIA_CUDA_SDK/common/inc/ \

-L "/NVIDIA_CUDA_SDK/1lib \

-lcutil \

cudaRecursiveGaussianFilter.cu

References

[YvV95] I.T. Young and L.J. van Vliet. Recursive implementation of the Gaussian filter. Signal
Processing, 44(2):139-151, 1995

Index

__global__: 8, 9.
argc: 3.
Arguments: 4.
argv: 3.

B: 8.

blockDim: 6, 8, 9.
blockldzx:
blocksize:
bm: 4.
b0:
b1:
b2:
b3: 5, 1,
bj: 5, 7.
calloc: 5.
CUDA_SAFE_CALL: 5.
cudaError_t: 5.
cudaFree: 5.
CudaGaussianFilter: 4.
cudaGaussianFilter: 4, 5.
cudaGaussKernel: 5, 8.
cudaGetErrorString: 5.
cudaGetLastError: 5.
cudaMallocPitch: 5, 9.
cudaMemcpyDevice ToHost:
cudaMemcpyHostToDevice:
cudaMemcpy2D: 5.
cudaSuccess: 5.

lov &
%l
Ne)

)y =

7
» 7
7
7

Tl Ot Gt Gt Ot
00 100 100 100

cudaTransposeKernel: 5, 9.

CUT_DEVICE_INIT: 3.
d_bm: b5, 8.
d_bm_transposed: 5.
err: b.

exit: b.
EXIT_FAILURE: 5.
forintf: 5.

free: 5.

gridsize: 5.

h.bm: 5.

h_res: 5.

. 8, 9.

m: 8§,
main:
MLMain: 3.
MLPutRealList: 5.
MLPutSymbol: 7.
mprep: 11.

n: 9.
NUM_OF_THREADS: 1, 5.

e 1o

d.
5.

S
<
ot o
|00 100

9
row: 9.

ko Iko

sigma: 5, 7.

sqrt: 7.
stderr: 5.
stdlink: 5,
stride: 5,
stride_tr:
strides: 9.
stridel: 9.
stride2: 9.
threadldzx:

7.

8.
5.

6, 8, 9.

List of Refinements

(CUDA Kernel for the Gaussian Filter 8, 9) Used in chunk 1.
(Calculate the parameter for the gaussian filter 7) Used in chunk 5.
(Gaussian Filter 5) Used in chunk 1.
<Headers 2> Used in chunk 1.

(Main Loop 3) Used in chunk 1.

(Mathematica MathLink Template for the Gaussian Filter 4) Used in chunk 1.

10

